Drive Applied Harmonic Filter Kit Installation, Operation, and Maintenance Manual

TCI, LLC W132 N10611 Grant Drive Germantown, Wisconsin 53022

Phone: 414-357-4480 Fax: 414-357-4484 www.transcoil.com © 2023 Publication No: 29289 Effective: 12/17/2024

Rev: S

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of TCI, LLC. The information in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. TCI, LLC assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication

Revision	Description	Date
A	Release	
В	Added 600 V Option	10/22/14
С	Updated Kit Numbering system	02/03/15
D	Updated Kit Usage Instructions	09/13/16
E	Updated 480 V 60 Hz HGP Fuse Tables	06/26/17
F	Updated 480 V 60 Hz HGP Fuse Tables	10/19/17
G	Updated Fuse Requirements Table	12/01/17
Н	Updated Filter Schematics	04/23/18
J	Update to include compliance	11/15/18
К	Update to include PQconnect	08/22/19
L	Update to include Bluetooth capability with PQconnect	09/25/19
М	Fixes to the PQconnect section	11/11/19
N	Updates to the PQconnect section	01/06/20
0	Updates to Installation checklist, performance guarantee, and PQconnect section	04/29/21
Р	Addition of torque values and updates to the parameter list	07/18/22
Q	Merged HGL Kits Information and added EtherNET I/P implementation to PQconnect, PQconnect Support for HGL Kits.	02/06/24
R	Updated the Kit Calibration UI and added a new feature	03/01/24
S	Updated PQconnect Parameter Tables and added additional Information for new C3 Firmware update and Add-On Profile	12/17/24

Performance Guarantee

Select and install the appropriate HarmonicGuard[®] or HarmonicShield[®] passive filter kit in a variable torque, variable frequency AC drive application, or electronically commutated motor (ECM) within our published technical specifications and we guarantee that the input current distortion will be less than or equal to 5% THID for standard Harmonic filters at full load, and less than 8% at 30% load. If a properly sized and installed filter fails to meet its specified THID level, TCI will provide material for necessary modifications or replacement filter at no charge.

Harmonic passive filters can also provide similar performances in other drive applications such as constant torque, DC drives & other phase-controlled rectifiers. However actual THID levels can vary by load and or speed & therefore, cannot be guaranteed.

Consult factory for assistance when applying Harmonic passive filters on these types of equipment.

MINIMUM SYSTEM REQUIREMENTS:

The guaranteed performance levels of this filter will be achieved when the following system conditions are met:

Frequency: 60Hz ± 0.75Hz

System Voltage: Nominal System Voltage (line to line) ±10%

Balanced Line Voltage: Within 0.5%

Background Voltage Distortion: < 0.5% THVD

For any drive applications, the input VFD current waveform shall be consistent with that of a VFD with 3% AC line reactance at full load and a 1.5% source impedance.

The ECM make and model shall be set to all necessary ECM parameters for compatibility with passive harmonic filters – consult ECM manufacturer for specific parameters and settings required.

NOTE: The presence of background voltage distortion will cause motors and other linear loads to draw harmonic currents.

Additional harmonic currents may flow into the Harmonic filter if there is harmonic voltage distortion already on the system. If higher levels of harmonic voltage distortion (2%-5%) are present, please contact TCI Tech Support.

***For PQconnect:** To run PQvision software, minimum system requirements are Windows 7 and 1280x720 resolution.

1.0	SAFETY	1
S	AFETY INSTRUCTIONS OVERVIEW	1
	VARNINGS AND CAUTIONS	
	GENERAL SAFETY INSTRUCTIONS	
2.0	GENERAL INFORMATION	2
		-
	ARMONICGUARD/HARMONICSHIELD FAMILY DESCRIPTION	
1	CI LIMITED WARRANTY POLICY	4
3.0	PRE-INSTALLATION PLANNING	5
V	ERIFY THE APPLICATION	5
	(IT USAGE RECOMMENDATIONS	
Н	IARMONICGUARD/HARMONICSHIELD KIT PART NUMBERING SYSTEM	6
T	ECHNICAL SPECIFICATIONS	8
4.0	INSTALLATION GUIDELINES	
S	SELECT A SUITABLE LOCATION	-
	Environment	-
М	Working Space IOUNTING THE FILTER KIT	
	OWER WIRING	
F	Filter's Schematic	
	Wire Sizing	
	Torque Values	
	SCCR Ratings	
L	INE REACTOR	
	Recommendations and Considerations	
	Line Reactor Wiring	22
Т		24
Т	UNED CIRCUIT CAPACITORS	24
	CONTACTOR (CUSTOMER SUPPLIED)	
	USE (HGL KIT ONLY - CUSTOMER SUPPLIED)	
0	OVER-TEMPERATURE/THERMAL SWITCH (OPTION)	26
5.0	PQCONNECT CONNECTIVITY	
Н	IARMONICGUARD/HARMONICSHIELD FILTER WITH PQCONNECT OVERVIEW	28
Μ	OUNTING	
	Selecting a Suitable Location	
	Mounting Hardware	
С	COMMUNICATION OPTIONS AND CONNECTIONS	
	PCB Connections	
-	Wiring and Configuration	
IV	NODBUS RTU	
	PQvision PC application Screen Elements Example Application Using "Simply Modbus Master 8.1.0"	
	Example Application Using Simply Moabus Master 8.1.0 Example Setup Instructions to Read Data from the PQconnect Unit	
	PQconnect Quick Start Unit Software Setup	
	r geonneer guick sturt onne sojtwure setup	

Harmonic Filter Kit Manual

Modbus RTU Register Map	
Feedbacks Register Map	
Setpoints Register Map	
Register References	
Waveform Data	
Status Detection History Data	
BLUETOOTH WIRELESS TECHNOLOGY	
EtherNet/IP	90
Wiring for EtherNet/IP communication	
IP Address Configuration for EtherNet/IP communication	
Viewing EtherNet/IP Data on a Website	
Using PQConnect Board with RSLogix 5000 VIA EtherNet/IP	
Option 1: Installing PQconnect EDS File in RSLogix 5000	
Option 2: Installing PQconnect AOP in RSLogix 5000	
Using Explicit Controller Messaging	
Using Implicit Controller Tags	
Reading and writing to PQconnect Waveform Arrays	
EtherNet/IP EDS File and Conformance Info	
EtherNet/IP Register Map	
Status Register Map	
Device Register Map	
Control Register Map	
Communication Register Map	
Power Register Map	
Voltage Register Map	
THVD Register Map	
Current Register Map	
THID Register Map	
TDD Register Map	
Scalar Register Map	
Calibration Reference Register Map	
Offset Register Map	
Onset and Delay Register Map	
Tech Access Register Map Read Only Register Map	
Assembly Objects	
Consuming Assembly Data Producing Assembly Data	
Waveform Data	
-	
6.0 PQCONNECT TROUBLESHOOTING	
HARMONICGUARD/HARMONICSHIELD PASSIVE FILTER STATUS WARNING	
CONNECTIVITY BOARD PROBLEM	
DEBUG STATUS CONDITIONS	
CONTACTOR PROBLEM	
ETHERNET/IP PROBLEM	

1.0 Safety

The information presented in this manual covers the HarmonicGuard/HarmonicShield Kits only ~ For the non-kit manual please visit Transcoil's webpage.

Safety Instructions Overview

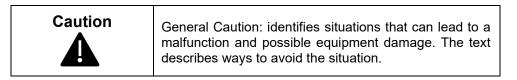
This section provides the safety instructions which must be followed when installing, operating, and servicing the HarmonicGuard & HarmonicShield Passive filter Kits. If neglected, physical injury or death may follow, or damage may occur to the filter or equipment connected to the HarmonicGuard/HarmonicShield filter. The material in this chapter must be read and understood before attempting any work on or with the product.

The HarmonicGuard filter kit is intended to be connected to the input terminals of one or more VFDs. The HarmonicShield filter kit must be connected to the input terminals of one or more VFDs or Electronically commutated motors (ECMs). Three-phase power is connected to the input terminals of the filter, and power is supplied to the VFD or VFDs through the filter. The instructions, particularly the safety instructions, for the VFDs, motors, and any other related equipment must be read, understood, and followed when working on any equipment.

Warnings and Cautions

This manual provides two types of safety instructions. Warnings are used to call attention to instructions that describe steps that must be taken to avoid conditions that can lead to a serious fault condition, physical injury, or death.

Cautions are used to call attention to instructions that describe steps that must be taken to avoid conditions that can lead to a malfunction and possible equipment damage.


Warnings

Readers are informed of situations that can result in serious physical injury and/or serious damage to equipment with warning statements highlighted by the following symbols:

Warning	WarningDangerous Voltage Warning: warns of situations where high voltage can cause physical injury and/or damage to equipment. The text next to this symbol describes ways to avoid the danger.	
Warning	General Warning: warns of situations that can cause physical injury and/or damage to equipment by means other than electrical. The text next to this symbol describes ways to avoid the danger.	
Warning	VarningElectrostatic Discharge Warning: warning of situations i which an electrostatic discharge can damage equipmen The text next to this symbol describes ways to avoid th danger.	

Cautions

Readers are informed of situations that can lead to a malfunction and possible equipment damage with caution statements:

General Safety Instructions

These safety instructions are intended for all work at the harmonic filter. Additional safety instructions are provided at appropriate points in other sections of this manual.

Warning	Be sure to read, understand, and follow all safety instructions.	
Warning	Only qualified electricians should carry out all electrical installation and maintenance work on the Harmonic filter.	
Warning	All wiring must be in accordance with the National Electrical Code (NEC) and/or any other codes that apply to the installation site.	
Warning	Disconnect all power before working on the equipment. Do not attempt any work on a powered filter.	
Warning	The Harmonic filter, drive, motor, and other connected equipment must be properly grounded.	
Warning	After switching off the power, always allow 5 minutes for the capacitors in the Harmonic filter and in the drive to discharge before working on the Harmonic, the drive, the motor, or the connecting wiring. It is a good idea to check with a voltmeter to make sure that all sources of power have been disconnected and that all capacitors have discharged before beginning work.	

2.0 General Information

Thank you for selecting the HarmonicGuard/HarmonicShield Filter Kit. TCI has produced this filter for use in many variable frequency drive (VFD) applications that require input power line harmonic current reduction. This manual gives an overview of how to install, operate, and maintain the HarmonicGuard/HarmonicShield Filter Kit. Please contact TCI Technical Support or visit our Support Page for additional information.

Intended Audience

This manual is intended for use by all personnel responsible for the assembly, wiring installation, operation, and maintenance of the HarmonicGuard/HarmonicShield filters and kits. Such personnel are expected to have knowledge of electrical wiring practices, electronic components, and electrical schematic symbols. Panel design using a TCI HarmonicGuard/HarmonicShield Filter Kit should be performed with appropriate engineering supervision, so the design meets the requirements based on materials utilized in the construction of the panel, wiring practices followed by your shop, and the actual ambient conditions of the components for each application.

HarmonicGuard/HarmonicShield Family Description

The HarmonicGuard (HG) passive filter offers an array of harmonic mitigation solutions designed for specific applications and industry. The HarmonicGuard Base solution (HGP), and HarmonicGuard Low Capacitance solution (HGL). Throughout this document, the HarmonicGuard passive filter lineup will be abbreviated as HarmonicGuard.

The HGP Solution is the industry leading solution for harmonic mitigation solution with remote connectivity and intelligent control for nonlinear loads such as VFDs and UPS Systems. Offering 5% Total Harmonic Current Distortion (THID) performance for any load conditions with a current TDD of 5%, with UL Listed Type 1, 3R, and 12 enclosures choices.

The HGL Solution is the industry leading solution for harmonic mitigation solution on generators. Offering 5% Total Harmonic Current Distortion (THID) performance for any load conditions with a current TDD of 5%, ideal for any low capacitance application.

The HarmonicShield passive filter offers an array of harmonic mitigation solutions designed for specific applications and industry. The HarmonicShield Base solution (HSD), HarmonicShield EC Motor solution (HSE), and HarmonicShield Low Capacitance Solution (HSL). *As of the published date of this document only HSE Kits are currently offered by TCI*.

The HarmonicShield ECM Solution is the industry leading solution for harmonic mitigation solution on ECMs. Offering 5% Total Current Demand Distortion (iTDD) performance for any load conditions ideal for any ECM application.

Receiving Inspection

The HarmonicGuard/HarmonicShield Filter Kit has been thoroughly inspected at the factory and carefully packaged for shipment. When you receive the unit, you should immediately inspect the shipping container and report any damage to the carrier that delivered the unit. Verify that the part number of the components you received is the same as the part numbers listed on the engineering drawings for the kit.

Storage Instructions

If the HarmonicGuard/HarmonicShield Kit filter is to be stored before use, ensure it is stored in a location that conforms to published storage humidity and temperature specifications stated within this manual.

TCI Limited Warranty Policy

TCI, LLC ("TCI") warrants to the original purchaser only that its products will be free from defects in materials and workmanship under normal use and service for a period originating on the date of shipment from TCI and expiring at the end of the period described below:

Product Family	Warranty Period	
KLR, KDR	For the life of the drive with which they are installed.	
HGA, KMG, MSD, V1K	One (1) year of useful service, not to exceed 18 months from the date of shipment.	
PF Guard, HGP, HGL, HSD, HSE, HSL, KRF	Three (3) years from the date of shipment.	
KCAP, KTR	Five (5) years from the date of shipment.	
All Other Products	One (1) year of useful service, not to exceed 18 months from the date of shipment.	

The foregoing limited warranty is TCI's sole warranty with respect to its products and TCI makes no other warranty, representation, or promise as to the quality or performance of TCI's products. THIS EXPRESS LIMITED WARRANTY IS GIVEN IN LIEU OF AND EXCLUDES ANY AND ALL EXPRESS OR IMPLIED WARRANTIES INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This warranty shall not apply if the product was:

- a) Altered or repaired by anyone other than TCI.
- b) Applied or used for situations other than those originally specified; or
- c) Subjected to negligence, accident, or damage by circumstances beyond TCI's control, including but not limited to, improper storage, installation, operation, or maintenance.

If, within the warranty period, any product shall be found in TCI's reasonable judgment to be defective, TCI's liability and the Buyer's exclusive remedy under this warranty is expressly limited, at TCI's option, to (i) repair or replacement of that product, or (ii) return of the product and refund of the purchase price. Such remedy shall be Buyer's sole and exclusive remedy. TCI SHALL NOT, IN ANY EVENT, BE LIABLE FOR INCIDENTAL DAMAGES OR FOR CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, LOSS OF INCOME, LOSS OF TIME, LOST SALES, INJURY TO PERSONAL PROPERTY, LIABILITY BUYER INCURS WITH RESPECT TO ANY OTHER PERSON, LOSS OF USE OF THE PRODUCT OR FOR ANY OTHER TYPE OR FORM OF CONSEQUENTIAL DAMAGE OR ECONOMIC LOSS.

The foregoing warranties do not cover reimbursement for removal, transportation, reinstallation, or any other expenses that may be incurred in connection with the repair or replacement of the TCI product.

The employees and sales agents of TCI are not authorized to make additional warranties about TCI's products. TCI's employees' and sales agents' oral statements do not constitute warranties; these shall not be relied upon by the Buyer and are not part of any contract for sale. All warranties of TCI are embodied in this writing and no other warranties are given beyond those set forth herein.

TCI will not accept the return of any product without its prior written approval. Please consult TCI Customer Service for instructions on the Return Authorization Procedure.

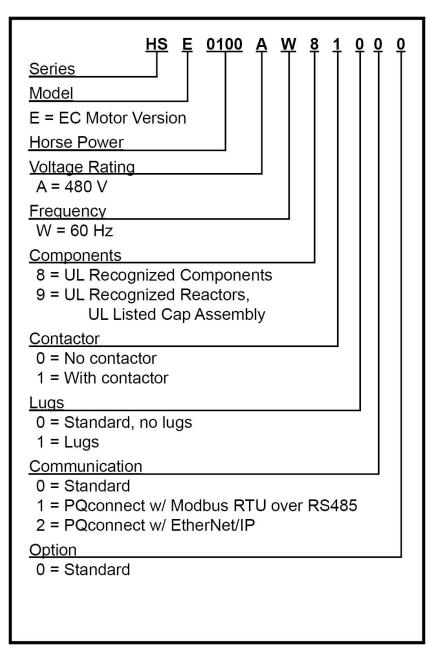
3.0 Pre-Installation Planning

Verify the Application

Make sure that the HarmonicGuard/HarmonicShield filter is correct for the application. The voltage ratings of the filter kit must match the input voltage rating of the connected load. The filter's rated frequency must match the power source's line frequency. The horsepower and current ratings of the filter kit must be appropriate for the connected load.

Kit Usage Recommendations

Panel design using a TCI HarmonicGuard/HarmonicShield Filter Kit should be performed with appropriate engineering supervision, so the design meets the requirements based on materials utilized in the construction of the panel, wiring practices followed by your shop, and the actual ambient conditions of the components for each application.


For the HarmonicShield HSE solution, size the nameplate current to the ECM's maximum load amps. To calculate total ECM load amps, consider the input currents for all ECMs connected to the filter, apply any code required increases to calculate total input current, then select the filter with this value for rated current or higher.

When properly designed, assembled, and installed, the completed product is intended to be suitable for use with 3-phase diode bridge rectifier loads, such as PWM AC drives. SCR or thyristor loads, such as DC drives, would require a different filter configuration outside the scope of this product offering. Please contact TCI Technical Support for additional information.

NOTE: Any Product Kit Drawings and Information can be found at: Kits Page - TCI, LLC

HarmonicGuard Kit Part Numbering System

Figure 1 : HarmonicGuard Kit Part Numbering System

HSE Kit Part Numbering System

Figure 2 : HSE Kit Part Numbering System

Technical Specifications

Table 1: HarmonicGuard[®] Passive Filter Kit Technical Specifications

Electrical Characteristics		
Voltage Rating	480, 600 VAC 208, 240, 380-415 VAC (HGP Kit Only)	
Phase	3Ø	
Compliance	IEEE-519 2022	
Operating Frequency	60 Hz 50 Hz (HGP Kit Only)	
Motor drive input power rating range	HGP: 1.5 – 1250 HP for 480 V units. HGL: 20 - 900 HP for 480/600 V units Power range differs depending on the system's voltage	
Immunity from Voltage Distortion	Less than 5% THID at full load with THVD as high as 5% - When configured for High Voltage Background Distortion.	
Overload Capability	200% of current rating for up to 3 minutes/per hour	
Environmental Conditions		
Operating Temperature	Kit component ambient: 50°C (122°F)	
Storage Temperature	60°C (140°F)	
Elevation	Up to 2,000 m without derating	
Humidity	95% non-condensing	
Agency approvals or certifications		
Capacitor Assemblies ("9" cap assembly Kit version)	CUL and cUL Listed	
Capacitors	CRUS UR and cUR Recognized	
Reactors	UR and cUR Recognized	
Performance Guarantee To meet the requirements for the Performance conform to the following:	e, Guarantee the minimum system conditions must	

- At least 1.5% source impedance.
- The input VFD current waveform shall be consistent with that of a VFD with 3% AC line reactance at full load

* Please consult TCI regarding optimum filter performance when applied to DC drives.

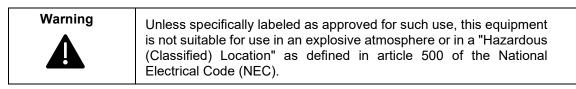
Electrical Characteristics		
Voltage/Frequency Ratings	480 V, 3 phase, 60 Hz	
Current Ratings	480V: 5 to 188 Amps	
kVAR Ratings	With Contactor as low as 0.0 kVAR/HP	
Load Types	Electronically Commutated Motors (ECMs).	
Load Power Range	5 to 150HP	
Overload Ratings	The included series reactors can tolerate 200% of rated current for up to 3 minutes once per hour	
iTDD Performance	<5% when sized appropriately at input to Load array	
iTHD Performance	<5% at full load	
Immunity from Voltage Distortion	<5% iTHD at full load with vTHD as high as 2%	
Communication Options	Modbus RTU over RS485 EtherNet/IP	
Environmental Conditions		
Operating temperature	Open: -40°C (-40°F) to 50°C (122°F) Enclosed: -40°C (-40°F) to 40°C (104°F)	
Storage temperature	-40°C (-40°F) to 60°C (140°F)	
Maximum Elevation	Up to 6,600 feet (2,000 meters) without derating	
Maximum Humidity	95%, non-condensing.	
Insertion Impedance	+/- 10% at full load current	
Agency Approvals		

c 🖳 us FC 🖌

NOTE: The HarmonicShield filter is UL Listed as an Auxiliary Device in accordance with PART X of UL 508 Standard for Industrial Control Equipment and does not require an SCCR rating or marking. HarmonicShield is not an Industrial Control Panel and so does not require a Short Circuit Current Rating such as is required of Industrial Control Panels to follow NFPA NEC Article 409. For applications requiring an SCCR rating, TCI offers the HGP product which features the same performance as the HarmonicShield and is an Industrial Control Panel with a true SCCR rating of 100 kA.

4.0 Installation Guidelines

Installation Checklist


The following are the key points to be followed for a successful installation.

- □ The following are the key points to be followed for a successful installation. These points are explained in detail in the following sections of this manual.
- □ Make sure that the installation location will not be exposed to corrosive or combustible airborne contaminants.
- Select a mounting area that will allow adequate cooling air and maintenance access.
- Make sure that all wiring conforms to the requirements of the National Electrical Code (NEC) and/or other applicable electrical codes.
- □ Connect the harmonic filter equipment-grounding lug to the system ground of the premises wiring system.
- Use a properly sized grounding conductor.
- Connect three-phase power to the input terminals of the harmonic filter, L1, L2 & L3.
- □ Connect the output power terminals of the harmonic filter, T1, T2 & T3, to the input power terminals of the VFD/ECM.
- Based on the ECM make and model, set necessary ECM parameters for compatibility with passive harmonic filters – consult ECM manufacturer for specific parameters and settings required. Disregard for standard VFD use.

Select a Suitable Location

Environment

Locating the HarmonicGuard/HarmonicShield Filter Kit in a suitable environment will help ensure proper performance and normal operating life. Refer to the environmental specifications listed in <u>Technical Specifications</u>.

The unit must be installed in an area where it will not be exposed to:

- Rain or dripping liquids (unless the filter kit is installed in a Type 3R enclosure)
- Corrosive liquids or gasses
- Explosive or combustible gases or dust
- Excessive airborne dirt and dust
- Excessive vibration

Working Space

Provide sufficient access and working space around the unit to permit ready and safe installation, operation, and maintenance. Make sure that the installation conforms to all working space and clearance requirements of the National Electrical Code (NEC) and/or any other applicable codes. Provide sufficient unobstructed space to allow cooling air to flow through the unit.

Mounting the Filter Kit

When mounting the filter kit in your enclosure, you must provide an enclosure that is adequately sized and ventilated sufficiently to prevent overheating. Refer to the applicable kit drawings for rating and dimensions. The maximum temperature of the air around the HarmonicGuard/HarmonicShield filter capacitors, line reactor, tuning reactor, and optional PQconnect PCB should not exceed 50°C (122°F).

Power Wiring

When selecting a mounting location for the HarmonicGuard/HarmonicShield Filter Kit, plan for the routing of the power wiring. Make sure all wiring conforms to the requirements of the NEC electrical codes and can handle the max current required according to your filter, for HGP kit reference <u>Wire</u> <u>Sizing</u>

NOTE: If your Harmonic filter kit includes the PQconnect PCB please also read <u>5.0 PQconnect</u> for proper mounting and wiring installation.

Panel design using a HarmonicGuard/HarmonicShield Filter Kit should be performed with appropriate engineering supervision, so the design meets the requirements based on materials utilized in the construction of the panel, wiring practices followed by your shop, and the actual ambient conditions of the components for each application.

Filter's Schematic

The schematics shown below are illustrations of typical HGP filter wiring.

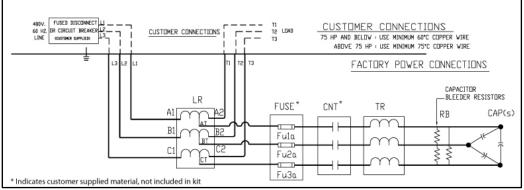
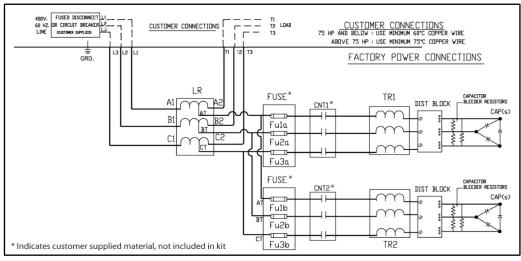
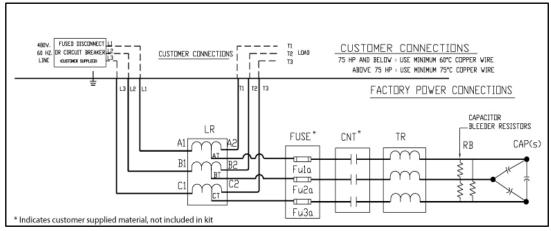
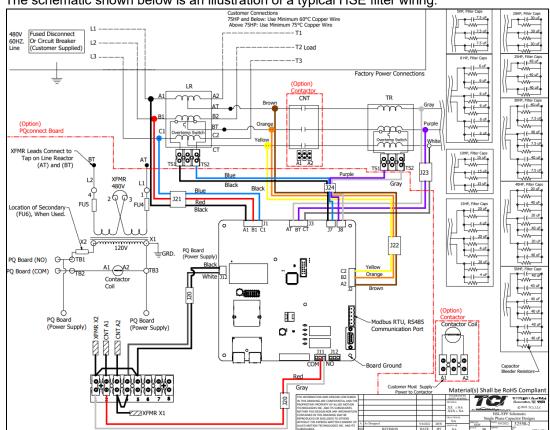


Figure 3 : HGP Filter Wiring for up to 480 V/800 HP


Figure 4 : HGP Filter Wiring for 480 V/1000 HP and Larger Rating

HarmonicGuard Kit Manual

The schematic shown below is an illustration of a typical HGL filter wiring.

The schematic shown below is an illustration of a typical HSE filter wiring.

Figure 6 : Typical HSE Filter Wiring

Wire Sizing

All Wires need to be sized based on the current to be carried, wire insulation temperature rating, panel temperature rating, bundling of wires, and appropriate codes and standards. Wire size between the power source and the filter line reactor, as well as the line reactor and the drive input, are based rated filter line current. Wire size in the branch circuit is based on rated tuned circuit current. If the capacitor wiring is split into separate capacitor branches, the current each branch carries is proportional to the value of capacitance in each branch.

HGP Rating (HP)	Tuned Circuit Current (A)	Line Current (A)
5	10.3	16.7
7.5	17.1	24.2
10	25.7	30.8
15	34.4	46.2
20	42.9	59.4
25	51.5	74.8
30	68.6	88
40	103	114
60	129	169
75	154	211
100	205	273
150	310	396
200	412	528
250	515	660
300	641	792

Table 3 : 208 V, 60Hz, HGP Kit

Table 4 : 240 V, 60Hz, HGP Kit

HGP Rating (HP)	Tuned Circuit Current (A)	Line Current (A)
5	10.3	15.2
7.5	13.7	22
10	17.1	28
15	25.7	42
20	34.4	54
25	42.9	68
30	51.5	80
40	68.6	104
50	77.0	130
60	103	154
75	129	192
100	154	248
125	205	318
150	257	360
200	308	480
250	410	604
300	513	722
400	641	954

HGP Rating (HP)	Tuned Circuit Current (A)	Line Current (A)
2	1.5	4.3
3	2.2	6.1
7.5	5.1	14
10	8.6	18
15	10.3	27
20	13.7	34
25	25.7	43
30	25.7	51
40	25.7	66
50	42.8	83
60	51.3	103
75	68.4	128
100	77.0	165
125	103	208
150	103	240
175	128	275
200	154	320
250	180	403
300	257	482
350	257	560
400	308	636
450	308	711
500	359	786
600	410	960
700	513	1120
750	513	1200
800	650	1280
900	650	1440
950	650	1520

Table 6 : 480 V, 60Hz, HGP Kit

HGP Rating	Watts Loss	Tuned Circuit Current (A)	Line Current
(HP)			(A)
1.5	80	0.9	3
3	85	1.5	4.8
5	85	2.2	7.6
7.5	115	5.1	11
10	135	5.1	14
15	190	8.6	21
20	230	10.3	27
25	285	13.7	34
30	240	17.1	40
40	435	25.7	52
50	455	25.7	65
60	600	34.2	77
75	750	42.8	96
100	700	51.3	124
125	815	68.4	156
150	1075	77.0	180
200	1325	103	240
250	1475	128	302
300	1875	154	361

HarmonicGuard Kit Manual

350	1725	180	414
400	1775	205	477
450	2000	231	515
500	2300	257	590
600	1975	308	720
700	1975	359	840
800	2025	410	960
900	1050	230	1080
1000	2500	257/257 (Parallel Branches)	1200

Note: The addition of the PQconnect option increases Watts Loss by 10.

Table 7 : 600 V, 60Hz, HGP Kit

HGP Rating (HP)	Tuned Circuit Current (A)	Line Current (A)
5	1.8	6.1
7.5	4.1	9
10	4.1	11
15	6.8	17
20	8.2	22
25	10.9	27
30	13.7	32
40	20.5	41
50	20.5	52
60	27.4	62
75	34.2	77
100	41.0	99
125	54.7	125
150	61.6	144
200	82.1	192
250	103	242
300	123	289
350	144	336
400	164	382
450	185	412
500	205	472
600	246	576
700	287	672
800	328	780
900	369	864
1000	410	960

HGL Rating (HP)	Tuned Circuit Current (A)	Line Current (A)
20	7.6	27
25	9.9	34
30	12.6	40
40	15.2	52
50	20.2	65
60	25.3	77
75	25.3	96
100	38.0	124
125	50.6	156
150	63.3	180
200	76.0	240
250	101	302
300	127	361
350	139	414
400	152	477
450	177	533.5
500	190	590
600	228	720
700	266	840
800	304	960
900	342	1080

Table 8	2	480 V	, 60Hz,	HGL Kit
---------	---	-------	---------	---------

Table 9 : 600 V, 60Hz, HGL Kit

HGL Rating (HP)	Tuned Circuit Current (A)	Line Current (A)
20	6.2	22
25	8.2	27
30	10.1	32
40	12.1	41
50	16.7	52
60	20.1	62
75	30.0	77
100	30.0	99
125	40.1	125
150	50.1	144
200	60.0	192
250	80	242
300	100	289
350	110	336
400	120	382
450	140	412
500	150	472
600	181	576
700	211	672
800	241	768
900	271	864

HSE Rating (HP)	Tuned Circuit Current (A)	Line Current (A)
5	2.2	8
8	2.8	10
10	3.5	15
15	5.7	20
20	7	25
25	9.4	32
30	11.1	39
40	14.1	50
50	18.7	60
60	22	75
75	27	100
100	38	125
125	45.9	150
150	54.2	188

Table 10 : 480 V, 60Hz, HSE Kit

Torque Values Table 11 : HarmonicGuard (HG) Kit 208 - 240 V Terminal Wire Size Capacity Range and Tightening Torque (CU)

		Line/Load Connections		Ground Co	nnection
HP Rating	Voltage Rating	Wire Range	Torque Lbs-in (N-m)	Wire Range	Torque Lbs-in (N-m)
3		14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	14 AWG to One 10 AWG	35 lbs-in (4.0 N-m)
5		14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	14 AWG to One 10 AWG	35 lbs-in (4.0 N-m)
8		14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	14 AWG to One 10 AWG	35 lbs-in (4.0 N-m)
10		14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	One 8 AWG	40 lbs-in (4.5 N-m)
15		14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	One 8 AWG	40 lbs-in (4.5 N-m)
20		6 AWG to One 4 AWG	45 lbs-in (5.1 N-m)	6 AWG to One 4 AWG	45 lbs-in (5.1 N-m)
25		6 AWG to One 4 AWG	45 lbs-in (5.1 N-m)	6 AWG to One 4 AWG	45 lbs-in (5.1 N-m)
30	208 V	One 250kcmil to 2 AWG	375 lbs-in (42.4 N-m)	One 250kcmil to 2 AWG	375 lbs-in (42.4 N-m)
40		Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)
50		Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)
60		Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)
75		Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)
100		Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)
150		Three 600kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Three 600kcmil to 2 AWG	375 lbs-in (42.4 N-m)
200		Three 600kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Three 600kcmil to 2 AWG	375 lbs-in (42.4 N-m)
8		14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	14 AWG to One 10 AWG	35 lbs-in (4.0 N-m)
10		14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	One 8 AWG	40 lbs-in (4.5 N-m)
15		14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	6 AWG to One 4 AWG	45 lbs-in (5.1 N-m)
20	240 V	14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	6 AWG to One 4 AWG	45 lbs-in (5.1 N-m)
25	240 V	6 AWG to One 4 AWG	45 lbs-in (5.1 N-m)	6 AWG to One 4 AWG	45 lbs-in (5.1 N-m)
30		3 AWG to One 2/0 AWG	50 lbs-in (5.6 N-m)	3 AWG to One 2/0 AWG	50 lbs-in (5.6 N-m)
40		One 250kcmil to 2 AWG	375 lbs-in (42.4 N-m)	One 250kcmil to 2 AWG	375 lbs-in (42.4 N-m)
50		One 250kcmil to 2 AWG	375 lbs-in (42.4 N-m)	One 250kcmil to 2 AWG	375 lbs-in (42.4 N-m)

60	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)
75	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)
100	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)

Table 12 : HarmonicGuard (HG) Kit 480V Terminal Wire Size Capacity Range and Tightening Torque (CU)

	Line/Load Connections		Ground C	Connection
HP Rating	Wire Range	Torque Lbs-in (N-m)	Wire Range	Torque Lbs-in (N-m)
3	18 AWG to 4 AWG	20 lbs-in (2.26 N-m)	14 AWG to One 10 AWG	35 lbs-in (4.0 N-m)
5	18 AWG to 4 AWG	20 lbs-in (2.26 N-m)	One 8 AWG	40 lbs-in (4.5 N-m)
8	18 AWG to 4 AWG	20 lbs-in (2.26 N-m)	6 AWG to One 4 AWG	45 lbs-in (5.1 N-m)
10	18 AWG to 4 AWG	20 lbs-in (2.26 N-m)	2 AWG to One 1/0 AWG	50 lbs-in (5.6 N-m)
15	14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	One 8 AWG	40 lbs-in (4.5 N-m)
20	14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	One 8 AWG	40 lbs-in (4.5 N-m)
25	14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	One 8 AWG	40 lbs-in (4.5 N-m)
30	14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	6 AWG to One 4 AWG	45 lbs-in (5.1 N-m)
40	14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	6 AWG to One 4 AWG	45 lbs-in (5.1 N-m)
50	14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	2 AWG to One 1/0 AWG	50 lbs-in (5.6 N-m)
60	14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	One 8 AWG	40 lbs-in (4.5 N-m)
75	3 AWG to One 2/0 AWG	50 lbs-in (5.6 N-m)	3 AWG to One 2/0 AWG	50 lbs-in (5.6 N-m)
100	3 AWG to One 2/0 AWG	50 lbs-in (5.6 N-m)	3 AWG to One 2/0 AWG	50 lbs-in (5.6 N-m)
125	One 250kcmil to 2 AWG	375 lbs-in (42.4 N-m)	One 250kcmil to 2 AWG	375 lbs-in (42.4 N-m)
150	One 250kcmil to 2 AWG	375 lbs-in (42.4 N-m)	One 250kcmil to 2 AWG	375 lbs-in (42.4 N-m)
200	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)
250	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)
300	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)
350	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)
400	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)
450	Two 600kcmil to 4 AWG	500 lbs-in (56.5 N-m)	Two 600kcmil to 4 AWG	500 lbs-in (56.5 N-m)
500	Two 600kcmil to 4 AWG	500 lbs-in (56.5 N-m)	Two 600kcmil to 4 AWG	500 lbs-in (56.5 N-m)
600	Four 600kcmil to 2 AWG	550 lbs-in (62.14 N-m)	Four 600kcmil to 2 AWG	550 lbs-in (62.14 N-m)
700	Four 600kcmil to 2 AWG	550 lbs-in (62.14 N-m)	Four 600kcmil to 2 AWG	550 lbs-in (62.14 N-m)
800	Four 600kcmil to 2 AWG	550 lbs-in (62.14 N-m)	Four 600kcmil to 2 AWG	550 lbs-in (62.14 N-m)
900	Four 600kcmil to 2 AWG	550 lbs-in (62.14 N-m)	Four 600kcmil to 2 AWG	550 lbs-in (62.14 N-m)
1000	Four 600kcmil to 2 AWG	550 lbs-in (62.14 N-m)	Four 600kcmil to 2 AWG	550 lbs-in (62.14 N-m)

	Line/Load Connections		Ground Connection		
HP Rating	Wire Range	Torque Lbs-in (N-m)	Wire Range	Torque Lbs-in (N- m)	
3	18 AWG to 4 AWG	20 lbs-in (2.26 N-m)	14 AWG to One 10 AWG	35 lbs-in (4.0 N-m)	
5	18 AWG to 4 AWG	20 lbs-in (2.26 N-m)	14 AWG to One 10 AWG	35 lbs-in (4.0 N-m)	
8	18 AWG to 4 AWG	20 lbs-in (2.26 N-m)	14 AWG to One 10 AWG	35 lbs-in (4.0 N-m)	
10	18 AWG to 4 AWG	20 lbs-in (2.26 N-m)	14 AWG to One 10 AWG	35 lbs-in (4.0 N-m)	
15	14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	14 AWG to One 10 AWG	35 lbs-in (4.0 N-m)	
20	14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	14 AWG to One 10 AWG	35 lbs-in (4.0 N-m)	
25	14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	One 8 AWG	40 lbs-in (4.5 N-m)	
30	14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	One 8 AWG	40 lbs-in (4.5 N-m)	
40	14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	6 AWG to One 4 AWG	45 lbs-in (5.1 N-m)	
50	14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	6 AWG to One 4 AWG	45 lbs-in (5.1 N-m)	
100	3 AWG to One 2/0 AWG	50 lbs-in (5.6 N-m)	3 AWG to One 2/0 AWG	50 lbs-in (5.6 N-m)	
125	One 250kcmil to 2 AWG	375 lbs-in (42.4 N-m)	One 250kcmil to 2 AWG	375 lbs-in (42.4 N-m)	
150	One 250kcmil to 2 AWG	375 lbs-in (42.4 N-m)	One 250kcmil to 2 AWG	375 lbs-in (42.4 N-m)	
200	One 600kcmil to 4 AWG	500 lbs-in (56.5 N-m)	One 600kcmil to 4 AWG	500 lbs-in (56.5 N-m)	
250	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	
300	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	
350	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	
400	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Two 350kcmil to 2 AWG	375 lbs-in (42.4 N-m)	
450	Two 600kcmil to 4 AWG	500 lbs-in (56.5 N-m)	Two 600kcmil to 4 AWG	500 lbs-in (56.5 N-m)	
500	Two 600kcmil to 4 AWG	500 lbs-in (56.5 N-m)	Two 600kcmil to 4 AWG	500 lbs-in (56.5 N-m)	
600	Three 600kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Three 600kcmil to 2 AWG	375 lbs-in (42.4 N-m)	
700	Three 600kcmil to 2 AWG	375 lbs-in (42.4 N-m)	Three 600kcmil to 2 AWG	375 lbs-in (42.4 N-m)	
800	Four 600kcmil to 2 AWG	550 lbs-in (62.14 N-m)	Four 600kcmil to 2 AWG	550 lbs-in (62.14 N-m)	
900	Four 600kcmil to 2 AWG	550 lbs-in (62.14 N-m)	Four 600kcmil to 2 AWG	550 lbs-in (62.14 N-m)	
1000	Four 600kcmil to 2 AWG	550 lbs-in (62.14 N-m)	Four 600kcmil to 2 AWG	550 lbs-in (62.14 N-m)	

Table 13 : HarmonicGuard (HG) Kit 600V Terminal Wire Size Capacity Range and Tightening Torque (CU)

Table 14 : HSE ECM Power Te	erminal Wire Size Capacity Range and	Tightening Torque (Cu)

Unit	Line/Load Connect	ions	Ground Connection	
HP	Wire Range*	Torque lbs-in (N-m)	Wire Range*	Torque lbs-in (N-m)
5 at 480 Volt	18 AWG to 4 AWG	20 lbs-in (3.4 N-m)	(Two) 14 AWG to 6 AWG	45 lbs-in (5.1 N-m)
7.5 to 50 at 480 Volt	14 AWG to 6 AWG	30 lbs-in (3.39 N-m)	(Two) 14 AWG to 6 AWG	45 lbs-in (5.1 N-m)
60 to 100 at 480 Volt	3 AWG to 2/0 AWG	50 lbs-in (5.6)	(Two) 14 AWG to 6 AWG	45 lbs-in (5.1 N-m)
125 to 150 at 480Volts	250Kcmil to 2 AWG	375 lbs-in (42.4 N-m)	(Two) 350kcmil to 6 AWG	375 lbs -in (42.4 N-m)

SCCR Ratings

If you need an SCCR greater than the default values of components, for example, 10 kA for terminal blocks or 5 kA for contactors, pay attention to component selection and circuit fusing. Contractors need to be protected by line or branch-tuned circuit fusing based on their published SCCR.

All TCI HarmonicGuard/HarmonicShield Kits include reactors that are not required to have a short circuit current rating per UL 508A SB4.2.1 Exception 1.

See Table 12 for line fuse requirements to complete 100 kA SCCR for HGP kits and Table 13 for HGL kits. Larger kits include dry-type capacitors that are not required to have a short circuit current rating per UL 508A SB4.2.1 Exception 1. Small horsepower HGP kits (see Table 12) and HGL kits (See Table 13) have a line fuse requirement to reduce incoming 100 kA short circuit current to 10 kA on the panel suitable for the oil-filled capacitors used on these small horsepower ratings.

Voltage	HP/kW Rating	Customer Installed Line Fuse Requirements to Comply with the 100 kA SCCR	
600	≤ 40	Use appropriately rated Class J, T, or L fuse less than or equal to 60 A	
600	> 40	No requirement for SCCR	
480	≤ 40	Use appropriately rated Class J, T, or L fuse less than or equal to 60 A	
480	> 40	No requirement for SCCR	
440	≤ 30	Use appropriately rated Class J, T, or L fuse less than or equal to 60 A	
440	> 30	No requirement for SCCR	
415	≤ 30	Use appropriately rated Class J, T, or L fuse less than or equal to 60 A	
415	> 30	No requirement for SCCR	
240	≤ 10	Use appropriately rated Class J, T, or L fuse less than or equal to 60 A	
240	> 10	No requirement for SCCR	
208	≤ 10	Use appropriately rated Class J, T, or L fuse less than or equal to 60 A	
208	> 10	No requirement for SCCR	

Table 15 : HGP Kit customer Installed Line Fuse Requirements for 100kA SCCR Compliance

Voltage	HP/kW Rating	Customer Installed Line Fuse Requirements to Comply with the 100 kA SCCR
600	≤ 40	Use appropriately rated Class J, T, or L fuse less than or equal to 60 A
600	> 40	No requirement for SCCR
480	≤ 30	Use appropriately rated Class J, T, or L fuse less than or equal to 60 A
480	> 30	No requirement for SCCR

*Please review UL 508A SB4.1 in the context of the final filter design (any deviation from the TCI HarmonicGuard/HarmonicShield filter of similar rating) and <u>Table 12</u> to confirm applicable SCCR for HGP kits and <u>Table 13</u> for HGL kits.

KPC capacitor kit KPCUL assemblies are listed as UL 508 assembles, and therefore do not carry an SCCR. The customer or installer shall provide UL required overcurrent protection upstream of filter.

Line Reactor

Recommendations and Considerations

When installing the KDR Line Reactors on the INPUT side of the VFD, please use the following guidelines when wiring the unit:

The KDR Line Reactor is a 3-phase device and should be wired in series and positioned on the input side of the VFD.

All Terminal Block connectors will be marked. A1, B1, and C1 are the input terminals where the 3 phases of incoming power are to be wired. The tap for the filter connection will be marked AT, BT, and CT. Output terminals will be marked A2, B2, and C2. Do not swap input and output terminals. Units with copper bus or ring lug terminals are not marked. Wiring from the output terminals should connect to the input of the VFD.

Refer to NEC (National Electrical Code) wiring practices for appropriate wire sizes for your application.

TCI recommends that these reactors be wired and located as close to the front end of the VFD as possible to have the greatest success in both protecting the VFD as well as mitigating line harmonics. We recommend this be 10 feet of cable or less.

Reactors generate a lot of heat in normal operations and their surfaces get very hot. In standard 40°C ambient or less installations, a clearance of 3 inches on all sides of the reactors and its enclosure is recommended for assisting in heat dissipation. This is a general guideline for typical applications. If the reactor is being installed next to a heat sensitive instrument or control device, we recommend reviewing specific requirements on heat limitations. Line reactor heat loss information is available on the web at <u>Kits Page - TCI, LLC (transcoil.com)</u>

These reactors are designed to be floor-mounted or wall-mounted. Large open-style devices should be panel mounted by incorporating a bracket that would act as a shelf to support the reactor and/or enclosure. When installing an open style device in an existing control cabinet, drive cabinet, motor control center, or other large enclosure, the reactor should be mounted in the lower half of the cabinet to prevent hot spots or pockets of heat. Locating the reactor in the lower half of the cabinet typically allows better thermal dissipation and heat convection. Reactors with ducts should be mounted vertically for proper cooling.

NOTE: If the PQconnect PCB board is included in your kit please read through mounting and wiring practices found in <u>Section 5.0</u>

Line Reactor Wiring

In the higher-performance HarmonicGuard/HarmonicShield Kit design, tapped line reactor wiring is more critical than standard line reactor designs. Before tapped line reactors, it did not matter if you connected the A1, B1, or C1 to the line side or the drive side, however, on all HarmonicGuard/HarmonicShield Kits, the terminals cannot be swapped. Incorrect wiring of the line reactor will result in poor harmonic mitigation and could damage the reactor. Consult the reactor drawing for your line reactor to verify proper filter wiring. All line reactor drawings are available on the parts web page: Kits Page - TCI, LLC (transcoil.com)

The incoming line must be wired to the winding start noted as A1, B1, and C1 in the reactor drawing. The tuned circuit is typically connected to the winding tap noted as AT, BT, and CT in the reactor drawing, or it may be connected to the winding end noted as A2, B2, and C2 in the reactor drawing.

In small line reactors with a nine-position terminal block, the terminal block is wired A1, AT, A2, B1, BT, B2, C1, CT, and C2 from left to right.

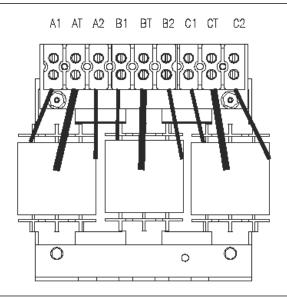


Figure 7 : Nine Position Terminal Block

In small line reactors with six position terminal blocks, the terminal block is wired A1, A2, B1, B2, C1, and C2 from left to right. The tap lugs AT, BT, and CT extend out from the front face of the coil.

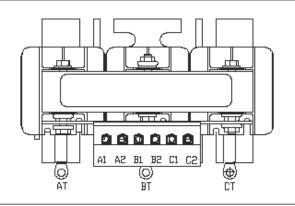


Figure 8 : Six Position Terminal Block

In line reactors where the current exceeds terminal block capability, ring lugs are used for all three terminations. Note from the drawing below, the tap connection is at the lower right side of the coil.

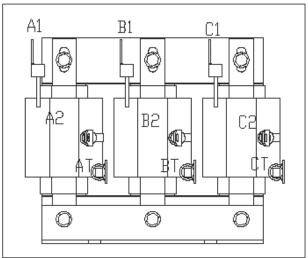


Figure 9 : Ring Lug Terminations

In larger line reactors, all three terminals extend from the front of the reactor and are constructed from copper bus bar terminals. Unless you are an expert on start and finish windings, consult the reactor drawing to be sure which terminal is which. In the example below, the tap winding is on the bottom of the coil.

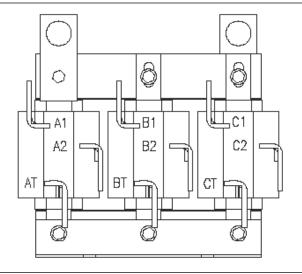


Figure 10 : Copper Flag Terminations

In the largest line reactors, the tap connection is off a winding that projects out from the front of the reactor.

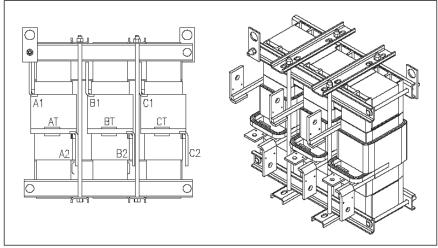


Figure 11 : In-Line Tap Termination

Tuning Reactor

The standard schematics above illustrate the normal configuration where the tuned circuit is connected to the line reactor tap. If high background voltage distortion is present, typically when the background voltage distortion exceeds 3% THD, the tuned circuit is connected to A2, B2, and C2 of the line reactor to improve harmonic performance under high background distortion conditions.

The tuning reactor supplied with the HarmonicGuard/HarmonicShield Kits has six terminals A1, A2, B1, B2, C1, and C2. If a consistent three terminals are used, the A1, B1, and C1 tuned reactor terminals or A2, B2, and C2 tuned reactor terminals can be connected to the line reactor tap at AT, BT, and CT.

Tuned Circuit Capacitors

The capacitors supplied in the HarmonicGuard/HarmonicShield Kits are intended to be connected in parallel with each other. Typically, these are three terminal three-phase capacitors with the

internal capacitive elements connected in delta. Each capacitor has a bleeder resistor connected across the three input terminals to ensure voltage discharges in the time required by UL. Do not connect capacitors to power unless the bleeder resistors are connected, hazardous voltages will remain across the capacitors after the power has been disconnected.

As a check, the total kVAR of capacitors connected to the tuned reactor should match the part number of the reactor. For example, the HGP kit for a 480 V/100 HP contains two 15 kVAR capacitors for a total of 30 kVAR. These are wired in parallel to the tuning reactor, KTR30A65HG. While the HGL kit for a 480 V/200 HP contains three 10 kVAR capacitors for a total of 30 kVAR. These are wired in parallel to the tuning reactor, KTR30A65HG.

For the largest 480V HGP kits, there are two tuned circuits connected in parallel with each other. For example, the 480 V/100 HP HGP kit contains 300 kVAR of capacitors. One tuned reactor KTR150A65HG is wired to 150 kVAR of capacitors; the second tuned reactor KTR150A65HG is wired to the remaining 150 kVAR of capacitors.

Please note that the labeled capacitor kVAR is rated at 480V or 600 V. So, in cases where the voltage of the "kit" is different, such as 400 V, the kVAR of the capacitors will be different than what the label states. Frequency is also a consideration in the kVAR rating. This means that the kVAR of the KTR tuning reactor will be different from the total capacitance of all capacitors included in the kit. This is normal. The small horsepower kits, 480 V/1.5 HP through 480 V/10 HP and 600V/5 HP through 600 V/10 HP are supplied with single-phase capacitors for each filter. These capacitors are connected in wye, and the bleeder resistors are connected across the terminals of each capacitor.

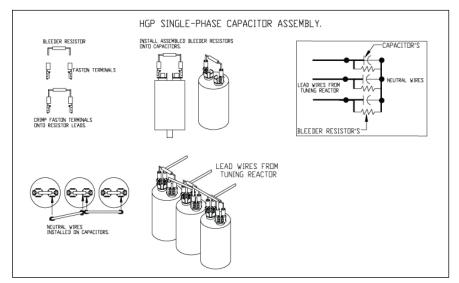


Figure 12 : Bleeder Resistor Installation and Wiring for Single-Phase

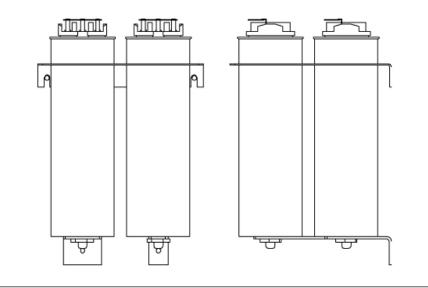


Figure 13 : Capacitors and Brackets

Capacitor brackets supplied with the HarmonicGuard/HarmonicShield CP Kits mount the capacitors from a right-angle bracket using the studs on the bottom of the capacitors. The bracket surrounding the capacitors is mounted near the top of the capacitor can. Rubber grommet material is placed around the large diameter holes to prevent the edges of the bracket damaging the capacitor cans. This hole does not firmly clamp the capacitors and is not intended to do so: such a design would prevent the internal capacitor pressure disconnection means from operating. This bracket prevents gross motion of the capacitors during shipping vibration which could fracture the mounting bracket or allow the capacitors to hit other components.

Contactor (Customer Supplied)

Your panels may include contactors to remove the tuned circuit from the filter under no load or light load conditions. If not select contactor size based on the contactor UL general purpose current rating to handle 110% of the tuned circuit current from the tables above. The impedance of the line and tuning reactors removes the need for special capacitor rated contactors in this application.

Fuse (HG Kit Only - Customer Supplied)

Your panels may include fuses in the tuned circuit. These can be selected based on the tuned circuit current from the tables above. Depending upon the application requirements, fuses may be needed to support HIGH SCCR, and fuse value/speed will also depend upon the application requirements.

Contact TCI Technical Support or visit Transcoil's Support Page for additional information.

Over-temperature/Thermal Switch (Option)

This option includes an over-temperature switch installed on both the Line Reactor and the Tuning Reactor. On each reactor, over-temperature switches are wired to a terminal block separate from the power terminals. The over-temperature switch opens if unpredicted heating occurs. An interlocking circuit should be used with the over-temperature switch to turn off the VFD to prevent filter damage in the event of filter overheating. The over-temperature switch contact is rated 6 amps at 120 VAC. The over-temperature switches are normally closed, open on temperature rise and typically have the following trip points:

• On a Class R 220°C insulation reactor, the switch opens on rise above 200°C

• On a Class H 180°C insulation reactor, the switch opens on rise above 160°C

Wire the over-temperature switches according to the reactor schematic using T1 and T2 locations on the over-temperature switch terminal block.

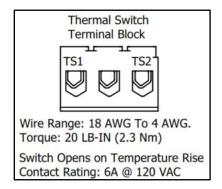


Figure 14 : Terminal Block

If this option is ordered with the PQconnect, the Thermal switch feedback will be wired to the PQconnect board, and the PQconnect will indicate whether there is an over-temperature problem. The PQconnect fault relay (J10 header) can be used to be alerted when there is an Over-temp issue as an additional measure.

5.0 PQconnect Connectivity

HarmonicGuard/HarmonicShield Filter with PQconnect Overview

The PQconnect is an integrated controls option for TCI's industry leading passive harmonic filter used for filtering the input of variable frequency motor drives (VFDs). In the passive harmonic filter, the PQconnect provides basic tuned circuit contactor control and provides unit status detection, metering, waveforms, and power quality data. The PQconnect data is made available via basic Modbus RTU over RS485 serial connection and an optional EtherNet/IP communication. The PQconnect is UL listed and intended for commercial and industrial applications. By default, the PQconnect is manufactured to close the contactor at 30% load.

*Please verify you have the latest manual version for your PQconnect software by visiting <u>https://transcoil.com/products/hgp-5-passive-harmonic-filter/</u>

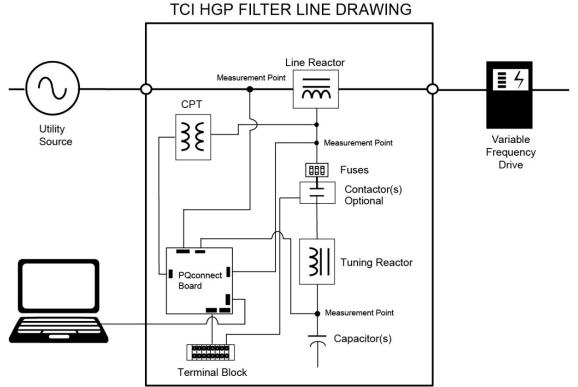
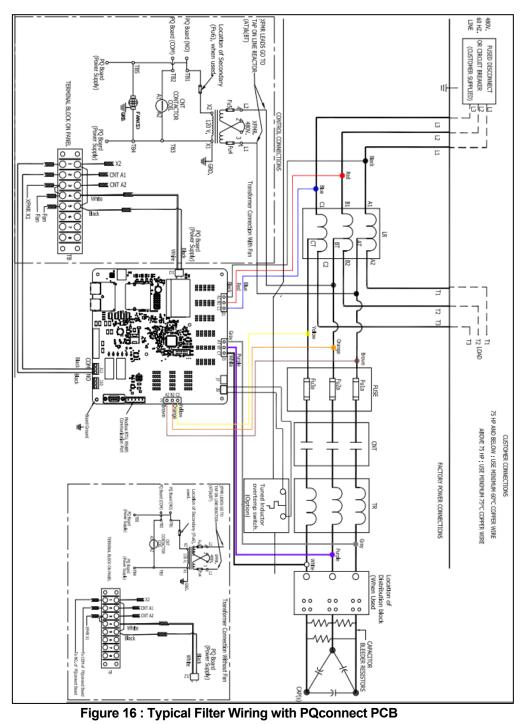



Figure 15 : HarmonicGuard/HarmonicShield Filter with PQconnect Connection Diagram

Mounting

Selecting a Suitable Location

When mounting the PQconnect board, provide an adequately ventilated location to prevent overheating. Refer to the applicable kit drawings for PCB dimensions. The maximum temperature of the air around the HGP filter components should not exceed 50°C (122°F). Consult the watts loss columns above in Filter Wire Sizing for Watts Loss when planning enclosure ventilation. When selecting a mounting location for the PQconnect PCB, plan for the routing of the power wiring. The figure below shows a representative schematic of power wiring. Note that there are direct connections from the KDR line reactor to the PQconnect PCB.

Mounting Hardware

Figure 15 below shows the standoffs and screws provided with the kits to mount the board on the bracket.

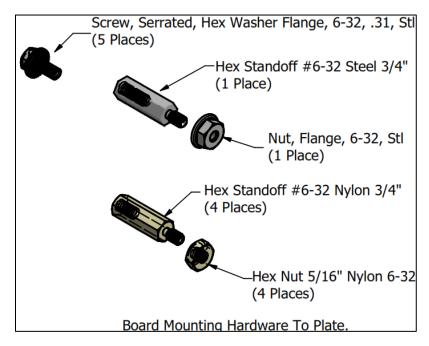


Figure 17 : PQconnect PCB Mounting Hardware

Reference Drawing **PKPQ5** for complete board mounting with the bracket.

When mounting the bracket into the enclosure there are three guidelines to follow.

1. Determine the best location where there is adequate ventilation, depth for components, and cables; away from any heat source.

2. The inside surface of the enclosure must be free of protrusions or obstructions in the area where the PQconnect board will rest.

3. Drill holes as needed per dimension provided.

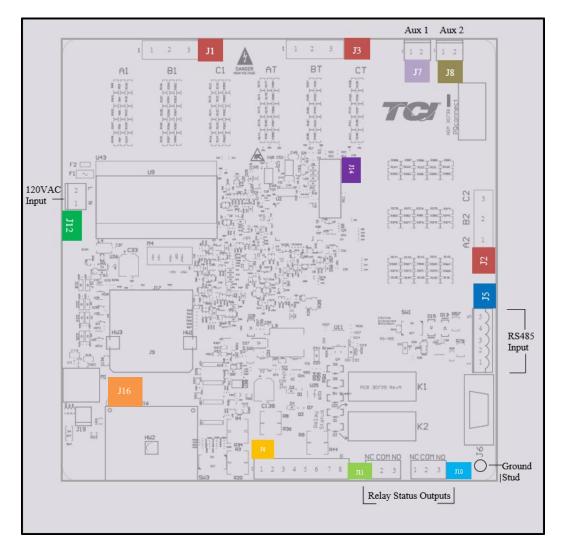
To ensure the board has a solid ground connection. The metal stud and nut provided with the kit will need to be installed onto the grounding pad of the board. <u>Figure 14</u> below indicates the location of the ground connection.

Communication Options and Connections

When selecting a mounting location for the PQconnect PCB, plan for the routing of the power wiring. Make sure all wiring conforms to the requirements of the NEC electrical codes and can handle the max current required.

PQconnect is an industry-leading monitor and control option for TCI's passive harmonic filter. Currently, three communication methods allow users to access their filters remotely: Modbus RTU, EtherNet/IP, and Bluetooth wireless technology.

Free software applications such as PQvision desktop and mobile app are provided for communication option Modbus RTU and Bluetooth wireless technology for real-time filter line/load voltage, current metering values, visual voltage and current waveforms, and spectrum data.


PCB Connections

Most customer connections to PQconnect will be made on the PCB. Refer to connection diagrams in <u>Figure 16: PQconnect Connections</u>. The details of the power and communications terminals are shown in <u>Table 14 : Power & Communications Terminals</u>. Form C relays are available on the PCB, these connections are shown in <u>Table 16 : Form C Relay Contacts/Customer Inputs/Outputs</u>.

Two relay outputs are available on the PCB. When drilling holes for wire access please ensure no metal shavings are on the PQconnect board.

The relay contactor control command input connection on J11 of the PCB allows the user to open/close the contactor of the HarmonicGuard/HarmonicShield Passive filter. The second relay (input connections on J12) is optional and could be used for a second contactor for dual tuned circuit filters or as a secondary status detection.

Filter purchases with EtherNet/IP will include two external connections for customers to connect their ethernet port. Refer to the connection diagrams below.

Figure 18: PQconnect Connections

Terminal	PCB Pin Connections	Reactor Connections	Description	Label	Rating
	A1	A1 (KDR)	Voltage Sense leads leading	Phase A	
J1	B1	B1 (KDR)	from J1 to the Line Reactor	Phase B	
	C1	C1 (KDR)	Input	Phase C	
	A2	AT (KDR)	Voltage Sense leads leading	Phase A	600
J2	B2	BT (KDR)	from J2 to the Line Reactor	Phase B	600 VAC
	C2	CT (KDR)	Тар	Phase C	VAC
	A3	KTR Output A	Voltage Sense leads leading	Phase A	
J3	B3	KTR Output B	from J3 to the Tuning	Phase B	
	C3	KTR Output C	Reactor Output	Phase C	
	1,2,3,4		Not Connected		N/A
			Current transformer	Only used for filters with dual	N/A
	5,6,7,8		connections	tuned circuits	N/A
	1			Not Connected	
	2			A (D-)	
J5	3	N/A	RS485	Ground	N/A
	4			B (D+)	
	5			Not connected	
J12	1		Input Power from control	Neutral	120
JIZ	2		power transformer	Line	VAC
J14	1-14		Micro Programming	For factory use	N/A
	1			TD-	
	2	1		TD-	1
J16	3	N/A	EtherNet/IP	RD+	N/A
	6	1		RD-	1
	4,5,7,8	1		Termination	1

Table 17 : Power & Communications Terminals

Note: The power terminals on the PQconnect accept 28 to 14 AWG stranded wire, with a tightening torque of 4.4 in-lb (0.5 Nm). For further detail of connections, view HGP schematic **29597-PQ2**.

Depending on the size of the line reactor, you have the option of different terminations based on the reactor. <u>Table 15 : Voltage Sense Wire Termination</u>, provides examples of the terminations used for the voltage sense wires from the PQconnect to the line reactor. All recommendations are used with 18 AWG stranded wire.

Connector Termination	Manufacturer Part Number	Manufacturer	Description	KDR Line Reactor Size
Metal tab	43178-4002	Molex, LLC	Blade Contact 18-20 AWG Crimp Male Blade	Small line reactors with six or nine position terminal blocks. Reference Figures 4 and 5
3/8" Ring Lug	2-320573-4	TE Connectivity Amp Connectors		Large line reactors with copper bus bar
1/4" Ring Lug	2-31894-2	TE Connectivity Amp Connectors	Ring Terminal Connector	terminals Reference Figures 6, 7 and 8
1/2" Ring Lug	61863-2	Tyco Electronics		Ç I

Table 18	3 : Voltage	Sense Wire	Termination
----------	-------------	------------	-------------

Note: Voltage sense wire terminals J1, J2 & J3 accept wire gauges of 16-28 AWG with a tightening torque of 4.4 in-lb (0.5 Nm). Alternate/Equivalent tabs and ring lugs may be used for terminations. Please consult with TCI Tech-Support if there are any questions for alternate parts or for reactor termination.

Terminal	Pin	Description	Label	Tightening Torque	Wire Range
J7	1,2	Multi-functional digital Input 1	Customer contact, normally open	3.5 lb-in (0.4 Nm)	28-12 AWG
J8	1,2	Multi-functional digital Input 1	Customer contact, normally open	3.5 lb-in (0.4 Nm)	28-12 AWG
	1		Normally Closed (NC)		
J11	2	Digital output form C Contact 1	Common (COM)	4.4 lb-in (0.5 Nm)	28-14 AWG
	3		Normally Open (NO)		
	1		Normally Closed (NC)		
J10	2	Digital output form C Contact 2	Common (COM)	4.4 lb-in (0.5 Nm)	28-14 AWG
	3		Normally Open (NO)		

 Table 19 : Form C Relay Contacts/Customer Inputs/Outputs

Note: Form-C relay contacts are gold plated with a load rating of 5.0A @ 120VAC

The filter is set to control the contactor pickup/drop-out at 30% of load current by factory default. This setting can be changed to the tech access page from the settings menu. **Multi-functional digital inputs** have the following functions:

- DEFAULT: 0 = Disabled
- 1 = Tuning Reactor Thermal Switch Input
- 2 = Line Reactor Thermal Switch Input
- 3 = Reset Command
- 4 = External Control Input

Digital Output form C Contact

- J11 reserved for contactor control.
- J10 used for status detection.

Wiring and Configuration

The PQconnect implements a Modbus RTU Master/Slave device, which supports two-wire RS-485 signal levels. The PQconnect communication port used for the Modbus RTU interface is connected directly to the PCB. An optional EtherNet/IP communication can be selected for the standard PQconnect board.

If you have purchased a filter with the EtherNet/IP option but your PQconnect board does not have the EtherNet/IP B40 Module and its software Rev is below C1.0 plus notify TCI or your vendor.

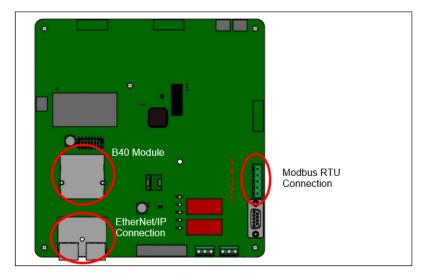


Figure 19 : PQconnect Modbus RTU Connection and Optional EtherNet/IP

The hardware pinout header and default protocol settings are shown below for Modbus and EtherNet/IP communication.

Table 20 : Modbus Connector Pin Definitions

J5 Header Pinout	Signal Name	Signal Type
1	No connect	-
2	D+	RS-485 B (non-inverting)
3	GND	RS-485 SC/G
4	D-	RS-485 A (inverting)
5	No connect	-

Table 21 : Modbus RTU Protocol Settings

Parameter	Default Value	Units
Baud Rate	115200	Bd
Data Bits	8	Bits
Stop Bits	1	Bits
Parity	Even	-
Slave ID	10	-

Table 22 : EtherNet/IP Connector Pin Definitions for Port 1 & 2

J16 Header Pinout	Signal Name	Signal Type	
1	Port 1	N/A	
2	Port 2	N/A	

Table 23 : EtherNet/IP Protocol Settings

Setting	Default Value
IP Address	192.168.1.35
Gateway	0.0.0.0
Subnet	255.255.255.0
DCHP	Disabled

The default Modbus settings can be modified via the PQconnect system menu. A Tech level access password is required to change these parameters. Ensure the board communicates to the desktop app and then First go to Menu -> Settings -> Modbus -> Change to desired Modbus parameters -> Apply ->Menu -> Save Settings. Finally, go to Menu -> Reset PQconnect, this will reboot the PQconnect with the desired Modbus parameters. Note: if the contactor state is closed it will open when clicking the reset command.

The network interface on the PQconnect allows the user to control the contactor and show internal status data of the filter. The PQconnect PC application (PQvision) accesses a ModbusRTU master device for the network interface (see the PQvision application display connections).

Table 24 : Configuration Switches

	Configure Modbus Connection on J5 Header	1 – Enable 560 Ω bias resistor on D	
SW1		2 – Enable 120 Ω termination resistor	
		3 - Enable 560 Ω pull-up on D+.	
J20	Remove jumper to use default Modbus settings on next reb		

The input and output registers from the HarmonicGuard/HarmonicShield Passive filter are mapped to the Modbus Analog Output Holding Registers starting at address 40000. All input and output registers are two bytes in size and formatted as 16-bit signed integers.

Note: All parameters with an asterisk (*) in the description will require the Tech level access codes parameter key A: 0x007D (125) and parameter key B: 0xEA6E (60014).

PQconnect PCB Calibration

Once the PQconnect connections are made the PCB must be calibrated to the HGP filter components to ensure proper accuracy and operation of the completed filter. The following steps will allow for units to be properly calibrated.

Note: Instillation of the PQvision desktop interface is required for calibration. Please see next section "PQvision Software" before proceeding with PCB calibration. You can download the free <u>PQvision software</u>.

Equipment: Calibrated current clamp meter, laptop, RS485 to USB converter

Step 1: After assembling HGP with PQconnect, ground the filter and install <u>only the line side</u> <u>connections</u> to the appropriate phases first. <u>Do not install the load side connections for</u> <u>calibration process</u>.

Ensure communication connections and voltage sense wires are made, follow <u>Table 14 : Power &</u> <u>Communications</u> Terminals for further detail.

Step 2: Energize the harmonic filter.

Step 3: Open PQvision interface and connect to a communication port.

- A "CONNECTED" message will appear verifying that the RS485 converter is connected to the board.
- If there are any difficulties communicating with the desktop interface, a "NO COM" message will appear. Refer to the <u>6.0</u> PQconnect Troubleshooting for possible solutions.

Note: If desktop interface does not show the com port, disengage power from filter and check wiring to the RS485 converter.

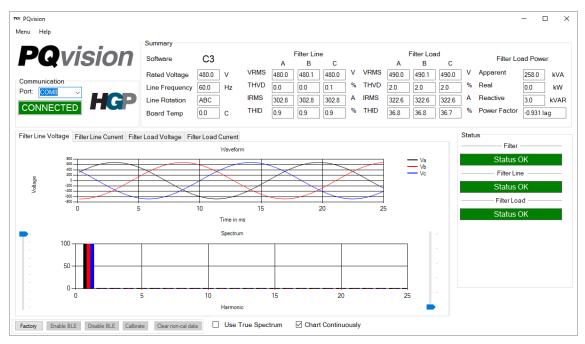


Figure 20 : Communication Port (COM port)

Step 4: Select Menu and Settings (Tech level access is required) as shown below.

• Password 08252014



Figure 21 : Settings Selection

Figure 22 : Kit Calibration Selection

7/23/2024 12:39:37 AM, Detected PCB Serial Number: 3072531/ 7/23/2024 12:39:37 AM, Cleared all parameter data, including Un data. Step 1 - Force Contactor Close	2 - 11 it Calibration Data, but not PCB Calibration
Set Contactor to Forc	
Step 2 - Select Model	Set contactor control mode t
Select the filter's part number and confirm filter's rati	ing. Add New Filter
Filter Part Number:	\sim
Type: Rated Frequen	Hz
Rated Volts: Vrms Rated Power:	HP Next>
High VTHD Enter Calibration M	lode
Litter Galiblauon w	lode
	MS Current
	wo ourient
Enter the current as measured by a	
Enter the current as measured by a calibrated power quality meter.	A A Apply>
Enter the current as measured by a calibrated power quality meter.	A A Apply>
Enter the current as measured by a calibrated power quality meter.	
Enter the current as measured by a calibrated power quality meter.	
Enter the current as measured by a calibrated power quality meter.	

Step 7: Follow through the Steps shown on the calibration screen shown below.

Figure 23 : Kit Calibration UI

Step 1: Click on Force Contactor Close

Step 2: Select the filter's part number by typing in the part number or selecting it from the combo box.

- Only the first 9 characters of the filters part number need to be entered.
- For example: 250HP 480V 60Hz HGP; unit model number **HGP0250AW** would be acceptable.
- If the filter is not found select the "Add New Filter" button shown in the figure below and contact TCI

Log 7/23/2024 12:39:40 AM, PQconnect Current Sensing Configuration Mode is 7/23/2024 12:39:40 AM, BGM Model number is B4 and is Awating Connec 7/23/2024 12:41:21 AM, Force Close Contactor vos closed succesfully. 7/23/2024 12:41:21 AM, Contactor was closed succesfully.	
1723/2024 12.41.21 Aim, Contractor was closed successfully.	~
Step 1 - Force Contactor Close	
Set Contactor to Force Close	
Step 2 - Select Model Select the filter's part number and confirm filter's rating.	Add New Filter
Filter Part Number:	\sim
Type: Rated Frequency:	Hz
Rated Volts: Vrms Rated Power:	HP Next>
Figure 24 · Add New I	Filter Button

Figure 24 : Add New Filter Button

- This will require a password. Enter Password: 03012024
- Enter the provided text file that TCI has emailed or sent for your filter; if you have not received a text file from TCI, reach out to TCI-Technical Support at <u>414-357-4541</u>
- After successfully selection, a "Filter Summary" window will be displayed to verify your filter information type, voltage, frequency, and power rating. If the displayed information differs from the nameplate or the filter that has been ordered, contact TCI-Technical Support immediately.

TRA Filter Summary		_	×
Filter Part Number:	TCI Example		
Туре	HGP		
Rated Voltage	480		Vrms
Rated Frequency	60		Hz
Rated Power	250		HP
	Done		

Figure 25 : Filter Summary

• Select **Done**, the added filter will be preselected as an option and will be an option that will exist in your PQvision application.

Calibration	– 🗆 X
Log 7/23/2024 12:43:49 AM, Model Type: HGP 7/23/2024 12:43:49 AM, Rated Voltage: 4800 7/23/2024 12:43:49 AM, Rated Frequnecy: 60 7/23/2024 12:43:49 AM, Rated Power: 250 HP	^
Step 1 - Force Contactor Close	
Set Contactor to Force Close	
Step 2 - Select Model Select the filter's part number and confirm filter's rating.	Add New Filter
Filter Part Number: TCI Example ~	
Type:HGPRated Frequency:60HzRated Volts:480VrmsRated Power:250HP	Next >

Figure 26 : Example of New Filter Selection

Verify your model number.

• Filter information (Voltage, frequency, Horsepower, Type) will show after the model number has been selected.

Туре:	HGP		Rated Frequency:	60	Hz
Rated Volts:	480	Vrms	Rated Horsepower:	250	Нр

Figure 27 : Filter Information

• Select Next.

Step 3: Enter Calibration Mode

- Enable Tune/Line Thermal Switches and other options based on your purchase filter option. High THVD option checkbox and Dual CT's requires external CTs or reconfiguration of the tuning circuit in order for the unit to be calibrated properly.
- Note: If there is a problem with the board it will not enter calibration mode
- Contact Tech-Support if the board does not enter the calibration state.

Step 4: Enter Current Measurements

- With a current clamp meter measure each individual phase from the input of the filter afterwards selects apply. *Calibration process will not continue unless fields are written.*
- Select Apply. May take up 1-2 minutes to complete.

Step 5: Finalization

- For Units with contactor control, select the "Enable contactor Control" and "Enable Auto Reset". Deselect these options for units without a contactor.
- Save and exit after completed.

Step 8: Final connections

- Disengage power from the filter after the calibration steps are complete, proceed with connecting the load side connections of the filter.
- If a PLC is being used make sure to make these connections to the Modbus header of the PCB
- Re-energize filter.

Modbus RTU

The PQconnect Modbus RTU network communication interface transmits and receives command and status data from the PQconnect Modbus master over an RS-485 serial link. Modbus RTU is a simple serial communications protocol originally developed by Modicon for use with Programmable Logic Controllers (PLCs) in control of industrial devices. Modbus RTU is commonly supported by most PLCs and is an open, royalty-free communications standard. The PQConnect board can be connected to PQvision desktop application for real-time monitorina for anv HarmonicGuard/HarmonicShield Filter.

PQvision PC application Screen Elements

This section focuses on the operation of the PQvision application. The PC application contains several screens that allow the user to monitor the status of the HarmonicGuard/HarmonicShield Passive filter. Additionally, the PQvision application can be used for contactor control and basic setup of the HarmonicGuard/HarmonicShield Passive filter. Enter password **08252014** to enable tech access.

Please ensure the latest version of PQvision is downloaded to your PC by accessing the software at https://transcoil.com/products/hgp-5-passive-harmonic-filter/pqvision-software/

To run the PQvision software, an RS485 to USB converter will need to be connected to terminal J5 on the PQconnect PCB with pin orientation as described in <u>Table 17 : Modbus Connector Pin</u> <u>Definitions</u> the USB connector will need to run to a laptop or <u>PC</u>.

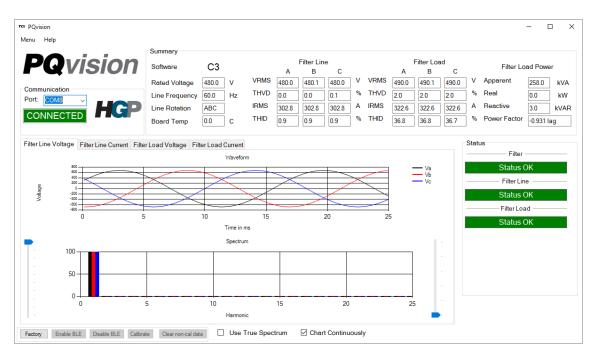


Figure 28 : PQvision Desktop Application

Table 25 : PQvision PC Navigation

Options	Description Communication Status and Communication Port
	To determine the COM port, go to Device Manager Ports (COM & LPT) and finding "USB Serial Port."
	Note: If Modbus settings differ from the default values shown in <u>Table 17 : Modbus Connector Pin</u> Definitions, then cycle power of the HarmonicGuard/HarmonicShield Passive filter.
Toolbar	DSP Rev: Latest software revision will be displayed.
	Filter Serial Number – Displays below the Communication status.
	Menu: Save settings, about screen, software update, tech access
	Settings – Modbus, contactor control, kVAR settings, alert management Help – Direct links to the TCI Home page and tech support contact information.
	(THVD) Displays the Total Harmonic Distortion of the utility Line/Load voltage as a percentage.
Summary Data	(THID) Displays the Total Harmonic Distortion of the utility Line/Load current as a percentage.
	Displays three-phase real power (P) of the filter output in kW*
	Displays three-phase reactive power (Q) of the filter output in kVAR*
	Displays three-phase apparent power (S) of the filter output in kVA*
	Displays filters output power factor. 1.00 indicates unity power factor. A negative power factor indicates lagging power factor.
	Displays the current utility line frequency in Hz.
	Displays the supply voltage into the HarmonicGuard/HarmonicShield Passive filter.
	Displays the filters input/output phase current in Amps RMS
	Displays Line rotation.
	Displays board temperature.
	The PQconnect PC application supports capture and display of real time system voltage and current data. Three phase waveform data can be viewed for Filter Line/Load Voltage, and Filter Line/Load Current.
Waveforms	Phase A – Black Phase B – Red
	Phase C – Blue
	Harmonic Spectrum (Left toggle to zoom in on the spectrum and right to increase the spectrum to the 50 th harmonic) the value of the fundamental is 100.
Status	Status alerts for the input, output and of the filter will display according to severity of the alerts.
Detections	Hovering over status alert will give a brief description of what the problem may be.
Line/Load po	wer values are calculated using fundamental values.

PQconnect Reset command: If changing the Modbus settings, the user will be required to reset the PCB after saving settings. This can be easily done through the menu by clicking menu and Reset PQconnect. The reset command will only work if the PCB is communicating with the desktop application or Modbus network. Note: resetting the board will open the contactor if contactor state is closed.

™ ≈ Settings		- 🗆 X
Contactor Control Relay and Status Al	erts Modbus Bluetooth Ethernet	_
Contactor Information Contactor Mode AUTO LOAD Contactor Re-Close Time	Contactor State CLOSED	Contactor Reset 1 Reset Contactor Auto Reset Disabled Enable Disable
		Enable
Contactor Mode Select 4	Open and Close Delay 3 Current Value N	ew Value
Force Open	Open Delay: 5 s 5	Apply
Force Closed	Close Delay: 5 s 5	Apply
Auto Load	Auto Mode	-
Relay	5 Close at 30%	
Auto kVAR	Auto Load Hysteresis: 5	· · · · · · · · ·
[Debug] Force Closed		

Figure 29 : Contactor Control Settings Menu

Designators	Name	Description
1	Contactor Reset	Allows the user to reset the state of the contactor. By default, the contactor is set to Auto reset the contactor
2	Contactor information	Explains the contactor control mode and state.
3	Open and Close Delay	Contactor delays in seconds. After selecting desired new value apply and save settings.
4	Contactor Mode Select	 Force Open will leave the contactor in an open state. Force Closed will leave the contactor in a closed state. Auto Load will close the contactor based on the load percentage selected. Relay will open/close the contactor depending on relay input configuration. By default, these are disabled. Auto kVAR: Based on the size of the filter the user can adjust their target kVAR settings to open/close the contactor. Note: Negative setpoint is a lagging target, positive setpoint is a leading target. [Debug] Force Close will keep the contactor closed for 15 minutes regardless of any Alerts that occur. This is used for debugging purposes for technicians. When changing the contactor control state, save settings to make the change final. Saving settings will open the contactor.
5	Auto Mode	Auto Mode allows the user to adjust the conditions how the contactor closes.

ontac	tor Contro	Relay and Status Alerts Modbus	Bluetooth Ether	net	
Statu	us Alert Ma	anagement			Relay Input 1 (J7)
1	Number	Status Name	Relay Output J10 (LED D2)	Contactor J11 (LED D1)	^ Off
•	0	Phase A Tune Phase Loss			Tune Therm SW
	1	Phase B Tune Phase Loss	\checkmark	\checkmark	
	2	Phase C Tune Phase Loss		\checkmark	Line Therm SW
	3	Phase A Tune Current Unbal.			Reset Command
	4	Phase B Tune Current Unbal.		\checkmark	
	5	Phase C Tune Current Unbal.			External Input
	6	Phase A Tune Undercurrent			Relay Input 2 (J8)
	7	Phase B Tune Undercurrent			
	8	Phase C Tune Undercurrent			Off
	9	Phase A Tune Overcurrent			Tune Therm SW
10	10	Phase B Tune Overcurrent			
	11	Phase C Tune Overcurrent			Line Therm SW
	12	Under Temperature			Reset Command
	13	Over Temperature			v
		Clear Changes	Apply Con	figuration	External Input

Figure 30: Relay and Status Settings Menu

Table 27: Relay and Status Settings Menu
--

Designators	Name	Description
1	Status Alert Management	 Enable and Disable status detections. Depending on which status conditions the user would like to view. The column labeled Relay & LED will show the LED pattern of the status detection and send a warning. The column labeled Contactor will open the contactor if the selected status is checked and send the warning. After selecting all desired status conditions, the user will need to select apply configuration and save settings.
2	Relay Input 1 (J7)	 Relay Inputs are based on how the board is connected to digital inputs. There is the option of having a thermal switch on the line reactor or tuning reactor. There is also an external control input option. J7 of the PCB is configured as Relay input 1 Select desired relay action if applicable and save settings.
3	Relay Input 2 (J8)	 Relay Inputs are based on how the board is connected to digital inputs. There is the option of having a thermal switch on the line reactor or tuning reactor. There is also an external control input option. J8 of the PCB is configured as Relay input 2 Select desired relay action if applicable and save settings.

Tex Settings —		×
Contactor Control Relay and Status Alerts Modbus Bluetooth Ethernet		
ModbusRTU		
Application - PQvision Device - PQconnect		
New Current 1 New Current	2	
Slave Address: 10 🖨 10 Slave Address: 10 🗣 10		
Baud Rate: 115200 V 115200 Baud Rate: V 115200		
Parity: Even V Even Parity: V Even]	
Apply Load Apply Load Defaults Apply		
Note: Save settings and restart PQconnect to load new Modbus settings		

Figure 31: Modbus Settings Menu

Table 28: Modbus Settings Menu

Designators	Name	Description
1	Application - PQvision	Allows the user to change Modbus settings for PQvision . When changing the Modbus settings for the Application the user will have to select the apply button for the new settings to take effect.
2	Device - PQconnect	Allows the user to change Modbus settings of the Device . When changing Modbus settings of the device the user will select apply and save settings. Afterwards the user will need to reset the board, this can be done by selecting " Reset PQconnect " from the drop-down menu. Note: After the user has changed the Modbus settings of the Device, they will need to change the PQvision App Modbus settings to reconnect.

Ter Settings		_	×
Contactor Control Related Status Alerts Modbus Bluetooth Eth	ernet		
Disable Bluetooth Enable Bluetooth Current 2			
Connection Status			
Awaiting Connection			
Disconnect Delete Bond Info Apply			
Security			
Basic Security Mode 3	5		
Change to Basic Change to High BGM version BGM111			
Basic Security Settings			
Current Passkey: 012345			
Change Passkey: Apply			

Figure 32: Bluetooth Settings Menu

Table 29: Blue	tooth Settings M	Menu
Designators	Name	Description
1	Bluetooth	By default, Bluetooth will be enabled. Users can disable or enable the Bluetooth module at tech and factory access.
2	Device ID	Bluetooth numeric identifier, this numeric identifier allows PQvision mobile to identify different PQconnect boards within a 100-ft range. Please change the numeric ID to a unique numeric ID from a value of 0- 99.
3	Security	 There are two security modes the user can select. High security Mode has the option of accepting and denying new connections to the device. Basic security Mode has the option of changing the passkey if the user would like to change from the default values.
4	Connection Status	Connection status will determine if the device is paired with another device. To delete bonding info from a mobile device to your PQconnect board select the "Delete Bond Info" and save the PQconnect settings.
5	Bluetooth Information	Displays the Bluetooth firmware and hardware version that is being used by the PQconnect board.

HarmonicGuard Kit Manual

ntactor Control	Relay and Status	Modbus	Bluetooth	Ethernet
Ethernet	4			
Configuration	(Read Only)	Etherne	t LED Statu	s
IP Addr: 1	92.168.001.035	C LE	ED1A	LED1B
Sub Net 2	55.255.255.000		ED2A	LED2B
Gateway: 0	00.000.000.000		-	
MAC Addr: 0	0 30 11 24 09 AD		ED3A	LED3B
DCHP:)isabled	E LE	D4A	LED4B
Module Info				
FW Ver: 1	.11			
HW Ver:	therNet/IP			
Status: N	loError			
otatus.				

Figure 33: EtherNet/IP Settings Menu

Designators	Name	Description
1.	Configuration	Read Only EtherNet/IP Configuration information about the PQconnect board. DCHP by default will be disabled.
		To configure IP Address, Sub net, and Gateway, please use the third- party utility application, <u>HMS IPconfig</u> provided by Anybus.
2.	LED Status	The Anybus CompactCom 40 series supports four bicolored LED indicators. All LED outputs are active high and used by the host application.
		Refer to Table 65 : PQconnect LED Codes for more information.

Table 30 : EtherNet/IP Settings Menu

For more information review sections <u>6.0</u> PQconnect Troubleshooting.

HarmonicGuard Kit Manual

	Name	Address	Requested	Value		2	
	Parameter save/load command	500	21	21	Read	Writ	te
	Waveform capture trigger command	501		0	Read	Writ	te
	Contactor reset command	502		0	Read	Writ	te
	Parameter access key value A	503	0	0	Read	Writ	te
	Parameter access key value B	504	0	0	Read	Writ	te
	Status detection history record request command	989		0	Read	Writ	te
Parar ioints	meter List Feedbacks Pinned				-		
	Name	Address	Value	•	_ <u></u>		Pin
	User State	10	12		F	Read	
	Digital Signal Processor DSP firmware version	12	13123	}	F	Read	
	Digital Signal Processor DSP model number	13	3		F	Read	\checkmark
	Digital Signal Processor DSP model number Fieldbus communications processor firmware version	13 14	3 0			Read Read	
					F		
	Fieldbus communications processor firmware version	14	0	}	F	Read	
	Fieldbus communications processor firmware version Fieldbus communications processor model number	14 15	0	8	F F	Read Read	
	Fieldbus communications processor firmware version Fieldbus communications processor model number Wireless communications firmware version	14 15 16	0 0 16948	ş	F	Read Read Read	
	Fieldbus communications processor firmware version Fieldbus communications processor model number Wireless communications firmware version Wireless communications firmware model number	14 15 16 17	0 0 16948 1	<u>}</u>	7 7 7 7 7 7	Read Read Read Read	
	Fieldbus communications processor firmware version Fieldbus communications processor model number Wireless communications firmware version Wireless communications firmware model number Configured utility grid voltage Utility grid frequency Utility grid phase rotation	14 15 16 17 20 21 22	0 0 16948 1 4800 600 1	ş 	4 4 7 8 9 8	Read Read Read Read Read	
	Fieldbus communications processor firmware version Fieldbus communications processor model number Wireless communications firmware version Wireless communications firmware model number Configured utility grid voltage Utility grid frequency Utility grid phase rotation Utility grid synchronization locked	14 15 16 17 20 21 22 23	0 0 16948 1 4800 600 1 1	}	1 1 1 1 1 1 1 1 1 1	Read Read Read Read Read Read	
	Fieldbus communications processor firmware version Fieldbus communications processor model number Wireless communications firmware version Wireless communications firmware model number Configured utility grid voltage Utility grid frequency Utility grid frequency Utility grid phase rotation Utility grid synchronization locked Line voltage phase AB RMS	14 15 16 17 20 21 22 23 30	0 0 16948 1 4800 600 1 1 1 4800	}		Read Read Read Read Read Read Read Read	
	Fieldbus communications processor firmware version Fieldbus communications processor model number Wireless communications firmware version Wireless communications firmware model number Configured utility grid voltage Utility grid frequency Utility grid phase rotation Utility grid synchronization locked Line voltage phase AB RMS Line voltage phase BC RMS	14 15 16 17 20 21 22 23 30 31	0 0 16948 1 4800 600 1 1 1 4800 4800	3		Read Read Read Read Read Read Read Read	
	Fieldbus communications processor firmware version Fieldbus communications processor model number Wireless communications firmware version Wireless communications firmware model number Configured utility grid voltage Utility grid frequency Utility grid phase rotation Utility grid synchronization locked Line voltage phase AB RMS Line voltage phase BC RMS Line voltage phase CA RMS	14 15 16 17 20 21 22 23 30 31 32	0 0 16948 1 4800 600 1 1 1 4800 4800 4801	}		Read Read Read Read Read Read Read Read	
	Fieldbus communications processor firmware version Fieldbus communications processor model number Wireless communications firmware version Wireless communications firmware model number Configured utility grid voltage Utility grid frequency Utility grid phase rotation Utility grid synchronization locked Line voltage phase AB RMS Line voltage phase BC RMS	14 15 16 17 20 21 22 23 30 31	0 0 16948 1 4800 600 1 1 1 4800 4800	3		Read Read Read Read Read Read Read Read	

Figure 34: Parameter List

The parameter list allows the user to view feedback and setpoints reported by the PQconnect. The parameter list can be accessed by clicking **Parameter List** in the Menu drop down. To view the full parameter list, Tech Access will need to be enabled.

Designators	Name	Description
1	Setpoints and Feedbacks	The Parameter List allows you to view both Setpoints (read and write values), and Feedbacks (read only values). The user can switch between the two by clicking the tab designator.
		Additionally, each of the setpoints and feedback can be viewed in the Pinned tab by clicking the corresponding checkbox in the <i>Pin</i> column.
2	Setpoint Write	The user can write values to the DSP setpoints by first entering a value into the <i>Requested</i> column, and then clicking the Write button. Once all desired setpoints are entered, save the settings by navigating to the main PQvision screen and clicking Save Settings in the menu drop down.
3	Feedback Read	The user can read values from the DSP feedbacks by clicking the Read button. This is helpful in order to help understand the current process in which the PQconnect board is at or parameter values that are being read from the PQconnect board.

Table 31: Parameter List

Index	Timestamp (pc:sec:msec)	Filter A Status	Filter B Status	LineStatus	Load Status	
0	003:000000019:990	0x0000 - OK	0x01C0 - TUN_UCUR_A - TUN_UCUR_B - TUN_UCUR_C	0x0000 - OK	0x0000 - OK	
L	002:0000000441:660	0x0000 - OK	0x01C0 - TUN_UCUR_A - TUN_UCUR_B - TUN_UCUR_C	0×0000 - OK	0x0000 - OK	
2	002:000000343:120	0x0000 - OK	0x01C0 - TUN_UCUR_A - TUN_UCUR_B - TUN_UCUR_C	0×0000 - OK	0x0000 - OK	
3	002:000000342:120	0x0002 - TUN_B	0x01C0 - TUN_UCUR_A - TUN_UCUR_B - TUN_UCUR_C	0×0000 - OK	0×0000 - OK	
4	002:000000334:090	0x0000 - OK	0x01C0 - TUN_UCUR_A - TUN_UCUR_B - TUN_UCUR_C	0×0000 - OK	0x0000 - OK	
5	002:000000327:070	0x0000 - OK	0x01C0 - TUN_UCUR_A - TUN_UCUR_B - TUN_UCUR_C	0x0005 - LINE_LPHASE_A - LINE_LPHASE_C	0x0000 - OK	
6	002:000000319:040	0x0000 - OK	0x0000 - OK	0x0005 - LINE_LPHASE_A - LINE_LPHASE_C	0x0000 - OK	
7	002:000000318:480	0x0000 - OK	0x0000 - OK	0x0000 - OK	0x0000 - OK	
8	002:000000304:980	0x0000 - OK	0x41C0 - TUN_UCUR_A - TUN_UCUR_B - TUN_UCUR_C - CPU_FAULT	0x0005 - LINE_LPHASE_A - LINE_LPHASE_C	0×0000 - OK	
			0x41C0 - TUN_UCUR_A -			

Figure	35 :	Status	Detection	History
--------	------	--------	-----------	---------

Table 32 : PQvision Status Detection History Menu

Designators	Name	Description
1	Index	Number of status conditions that occurred in the filter. Note: when reaching the 99 index any new status conditions will start to overwrite existing index's starting with index 0. The newest entry in the status history is always shown at the top of the history lists. The oldest entry will be at the bottom of the list.
2	Timestamp (PC: sec: msec)	The timestamp will indicate when a status condition was. detected. The first 3 numbers represent the number of times the board. power cycled when the event occurred. (PC) The middle 10 and last 3 digits represent the time in seconds: milliseconds format since the last power on of the PQconnect board since the status condition was detected.
3	Filter Status	Status will indicate the status detection that occurred. The status bit mask formatted as a hex value followed by a list of status conditions will be shown. Refer to the <i>Filter Status Register</i> <u><i>References Table</i></u> for more information.

Example Application Using "Simply Modbus Master 8.1.0"

The Modbus RTU network interface port is configured for RS-485 signal levels. The following example uses an RS-485 to USB converter to connect the PQconnect to a laptop PC running the Modbus RTU master application. The picture below shows an example "B&B SmartWorx, Inc Model: USPTL4" model RS-422/485 converter. As another alternative RS-485 converter there is WINGONEER USB 2.0 to RS485 Serial Converter Adapter CP2104.

Figure 36: B&B SmartWorx, Inc Model: USPTL4 model RS-422/485 converter.

With the example converter above, the user can make proper connections from the RS485 converter to the PQconnect J5 communication header. The table below indicates the positions where the RS485 connections lead to. Please ensure the correct dip switch settings are applied before installing.

J5 Header Pinout	B&B Converter USPTL4Pin Out	Signal Name	Signal Type
1	-	No connect	-
2	TDB(+)	D+	RS-485 B (non-inverting)
3	GND	GND	RS-485 SC/G
4	TDA(-)	D-	RS-485 A (inverting)
5	-	No connect	-

All four switches of the B&B converter from the factory should be set to the ON position and should look like the following.

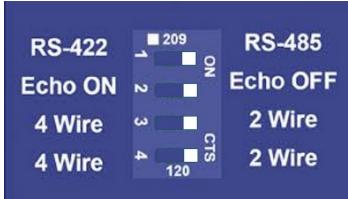


Figure 37: Dip Switch settings.

Example Setup Instructions to Read Data from the PQconnect Unit

- Connect the cable to the "J5" communication header.
- Connect the USB end to the computer.
 - Determine the assigned COM port number for the RS-485 to USB converter using the computer device manager control panel.
 - The converter used in this example typically enumerates between the range of COM5 to COM20 on a standard laptop computer running the Microsoft windows operating system.
- Open the Simply Modbus Master software.
 - Can be downloaded from the link below:
 - o http://www.simplymodbus.ca/manual.htm
 - The trial version of the software is free and fully functional for this task hence no License key is necessary.
- Next, configure the fields in the screen as shown below. These are again the default settings of the PQconnect COM port.
 - Note: The "notes" section of the display data registers is filled in manually

Simply Modbus Master 7.1.2					
mode COM port baud data bits stop bits parity	copy down 🛞	register#	bytes	results	notes dear notes 📎
\$RTU \$19 \$19200 \$8 \$1 \$even	16bit INT	40500	0000	0	Running
Slave ID First Register No. of Regs	16bit INT	40501	0001	1	Power On
‡ 113 ‡ 40500 ‡ 8	16bit INT	40502	0000	0	Faulted
function minus offset	16bit INT	40503	0000	0	Current Limit
2 hyte ID code	16bit INT	40504	O1DF	479	Line-Line Voltage
	16bit INT	40505	00F8	248	Line Current
Events History	16bit INT	40506	0064	100	Power Factor
Request / crc	16bit INT	40507	0000	0	Network Start Enable
71 03 01 F3 00 08 BE F3 SEND load before send response time (seconds) 0.1 Response fail in ‡ 2.0 71 03 10 00 00 00 01 00 00 00 00 01 00 00 01 10 DF 00 F8 00 64 00 00 B3 19 + W High byte/Low byte expected response bytes					
Image: Bolt of the second s	send continuously time between	sends res	se time 0.1 ponses 4 failed 0 LOG DAT/	<u> </u>	ON CONTROLOGICAL
2015/06/15 12:14:30 < 71 03 10 00 00 00 2015/06/15 12:14:41 >>> 71 03 01 F3 00 2015/06/15 12:14:41 < 71 03 10 00 00 00	08 BE F3			A5 00 00 85 F3	=

Figure 38: Example Setup Instructions to Write Data to the PQconnect Unit

- To control the contactor in the unit, first the user will need tech access by writing the parameter keys.
 - Navigate to the settings menu and then select the force open or force close button.
 - The contactor state box will indicate if the contactor is open or closed.
- Next, select the "WRITE" button on the screen shown above.
- The screen below will be shown. Configure the fields as shown in the picture.

Simply Modbus Master Write 7.1.2
mode COM port baud data bits stop bits parity Image: RTU Image:
Values to Write register # bytes Data Type 1.0000 40564 0001 16bit INT W High byte/ Low byte High word/ Low word
Command 71 06 02 33 00 01 B2 8D response time (seconds) 0.1 Response 71 06 02 33 00 01 B2 8D
RTS delay (ms) SAVE CFG expected response bytes 8 ON 0 0 crc B28D OFF 0 RESTORE CFG SAVE LOG dear log (2015/06/15 12:56:43 < 71 06 02 33 00 00 73 4D
2015/06/15 12:56:50 >>> 71 06 02 33 00 01 B2 8D 2015/06/15 12:56:50 < 71 06 02 33 00 01 B2 8D T

Figure 39: WRITE Screen

• Select "0" in the field "Values to Write" to close the contactor or "1" to open the contactor.

PQconnect Quick Start Unit Software Setup

- Verify connections to the PCB via ModbusRTU over RS485 before filter is energized.
- Download PQvision software found on our website: <u>https://transcoil.com/products/pqvision-software/</u>
- Enter password: 08252014 to access software package.
 - Select communication port (Data should be shown after the board communicates)
 - Note: Default Modbus settings of the application are below.
 - o Baud rate: 115200
 - o Parity: Even

•

- Slave Address: 10
- See Figure 29: Modbus Settings Menu for changing the default settings.

Modbus RTU Register Map

The input and output registers from the HarmonicGuard/HarmonicShield Passive filter are mapped to the Modbus Analog Output Holding Registers starting at address 40000 to 49999 and Analog Input Registers starting at address 30000 to 39999. Parameter Tables shown below are broken down into parameter groups with a size of 16 bits. Please note that the Register Map tables may not match the EDS file groups parameters and some parameters may only be kept in reservation for future use. All Feedback Register Parameters are read-only, while All Setpoint Register Parameters are Read/Write Parameters.

Feedbacks Register Map

Parameter Name	I/O Register Address Offsets	Description	Notes
USER_STATE	10	User State	User State Parameter 00 = INIT_START 01 = INIT_DELAY 02 = INIT_E2_CHIP 03 = INIT_FLASH_TEST 04 = WRITE_FLASH_TEST 05 = SETUP_FLASH 06 = SETUP_NON_CAL_FLASH 07 = SAVE_CURRENT_VALUES 08 = STAMP_EE 09 = INIT_FROM_DEFAULTS 10 = INIT_FROM_FLASH 11 = EXECUTE_PARAM_FUNCTIONS 12 = PARAM_INIT_FINISH 13 = RESTORE_DEFAULTS 14 = RESTORE_NON_CAL_DEFAULTS 15 = INIT_SAVE_CURRENT_VALUES 16 = REBOOT 17 = SETUP_UNIT_CAL_DEFAULTS 18 = RESTORE_UNIT_CAL_DEFAULTS
DSP_SW_VER	12	Digital Signal Processor DSP firmware version	Software Revision Code for Processor Two 8bit ASCII characters 0x0141 = ASCII for "A1"
DSP_MODEL_NUM_RO	13	Digital Signal Processor DSP model number	System Model Numbers 0 = Undefined 3 = Sim 101 = HSD 102 = HGL 103 = HGP 104 = HSL 105 = HSE 200 = KIT - BLANK 202 = KIT - HGL 203 = KIT - HGP 205 = KIT - HSE
HMS_SW_VER	14	Fieldbus communications processor firmware version	Ethernet Module Model Number
HMS_MODEL_NUM_RO	15	Fieldbus communications processor model number	Ethernet Hardware Version Number Notifies the user what type of Module is connected.
BGM_SW_VER	16	Wireless communications firmware version	Software Revision Code for Bluetooth Processor Two 8bit ASCII characters 0x4234 = ASCII for "4B"

BGM_MODEL_NUM_RO	17	Wireless communications firmware model number	Module Revision Code for Bluetooth Processor 0 = Null 1 = BGM111 2 = BGM210 3 = BGM220
LINE_VOLTAGE	20	Configured Utility Grid Voltage	Filter Input Voltage 4800 = 480.0
LINE_FREQ	21	Utility grid frequency	Filter Input Frequency 500 = 50.0
LINE_ROT	22	Utility grid phase rotation	Filter Input Phase Orientation 1 = ABC Rotation Expected 2 = ACB Rotation Expected
LINE_LOCK	23	Utility grid synchronization locked	Filter Utility Grid Synchronous Locked (PLL) 0 = Not Locked 1 = Locked
V_LINE_AB_RMS	30	Line Voltage Phase AB RMS	Source Utility Line Phase to Phase Voltage (A-B) 4800 = 480.0 Vrms Range: 0 to 1000 Vrms
V_LINE_BC_RMS	31	Line Voltage Phase BC RMS	Source Utility Line Phase to Phase Voltage (B-C) 4800 = 480.0 Vrms Range: 0 to 1000 Vrms
V_LINE_CA_RMS	32	Line Voltage Phase CA RMS	Source Utility Line Phase to Phase Voltage (C-A) 4800 = 480.0 Vrms Range: 0 to 1000 Vrms
V_LINE_AB_THD	33	Line Voltage Phase AB THD	Source Utility Line Phase to Phase Voltage (A-B) THD 10 = 1.0%
V_LINE_BC_THD	34	Line Voltage Phase BC THD	Source Utility Line Phase to Phase Voltage (B-C) THD 10 = 1.0%
V_LINE_CA_THD	35	Line Voltage Phase CA THD	Source Utility Line Phase to Phase Voltage (C-A) THD 10 = 1.0%
I_LINE_A_RMS	36	Line Current Phase A RMS	Source Utility Line Phase to Phase Current (A) 1002 = 100.2 Arms Range: 0 to 1000 Arms
I_LINE_B_RMS	37	Line Current Phase B RMS	Source Utility Line Phase to Phase Current (B) 1002 = 100.2 Arms Range: 0 to 1000 Arms
I_LINE_C_RMS	38	Line Current Phase C RMS	Source Utility Line Phase to Phase Current (C) 1002 = 100.2 Arms Range: 0 to 1000 Arms
I_LINE_A_THD	39	Line Current Phase A THD	Source Utility Line Phase to Phase Current (A) THD 10 = 1.0%

I_LINE_B_THD	40	Line Current Phase B THD	Source Utility Line Phase to Phase Current (B) THD 10 = 1.0%
I_LINE_C_THD	41	Line Current Phase C THD	Source Utility Line Phase to Phase Current (C) THD 10 = 1.0%
I_LINE_A_TDD	42	Filter Input Total Demand Distortion Phase A Current TDD	Source Utility Total Demand Distortion Phase A 10 = 1.0%
I_LINE_B_TDD	43	Filter Input Total Demand Distortion Phase B Current TDD	Source Utility Total Demand Distortion Phase B 10 = 1.0%
I_LINE_C_TDD	44	Filter Input Total Demand Distortion Phase C Current TDD	Source Utility Total Demand Distortion Phase C 10 = 1.0%
V_LOAD_AB_RMS	50	Load Voltage Phase AB RMS	Filter Output Phase to Phase Voltage (A-B) 4800 = 480.0 Vrms Range: 0 to 1000 Vrms
V_LOAD_BC_RMS	51	Load Voltage Phase BC RMS	Filter Output Phase to Phase Voltage (B-C) 4800 = 480.0 Vrms Range: 0 to 1000 Vrms
V_LOAD_CA_RMS	52	Load Voltage Phase CA RMS	Filter Output Phase to Phase Voltage (C-A) 4800 = 480.0 Vrms Range: 0 to 1000 Vrms
V_LOAD_AB_THD	53	Load Voltage Phase AB THD	Filter Output Phase to Phase Voltage THD (A-B) 10 = 1.0%
V_LOAD_BC_THD	54	Load Voltage Phase BC THD	Filter Output Phase to Phase Voltage THD (B-C) 10 = 1.0%
V_LOAD_CA_THD	55	Load Voltage Phase CA THD	Filter Output Phase to Phase Voltage THD (C-A) 10 = 1.0%
I_LOAD_A_RMS	56	Load Current Phase A RMS	Filter Output Phase to Phase Current (A) 920 = 92.0 Arms Range: 0 to 1000 Arms
I_LOAD_B_RMS	57	Load Current Phase B RMS	Filter Output Phase to Phase Current (B) 920 = 92.0 Arms Range: 0 to 1000 Arms
I_LOAD_C_RMS	58	Load Current Phase C RMS	Filter Output Phase to Phase Current (C) 920 = 92.0 Arms Range: 0 to 1000 Arms
I_LOAD_A_THD	59	Load Current Phase A THD	Filter Output Phase to Phase Current (A) THD 10 = 1.0%

5.0 PQconnect Connectivity

I_LOAD_B_THD	60	Load Current Phase B THD	Filter Output Phase to Phase Current (B) THD 10 = 1.0%
I_LOAD_C_THD	61	Load Current Phase C THD	Filter Output Phase to Phase Current (C) THD 10 = 1.0%
V_TUNE_A_RMS	70	Tuned Circuit Voltage Phase AB RMS	Filter Tune Phase to Phase Voltage (A-B) 4800 = 480.0 Vrms Range: 0 to 1000 Vrms
V_TUNE_B_RMS	71	Tuned Circuit Voltage Phase BC RMS	Filter Tune Phase to Phase Voltage (B-C) 4800 = 480.0 Vrms Range: 0 to 1000 Vrms
V_TUNE_C_RMS	72	Tuned Circuit Voltage Phase CA RMS	Filter Tune Phase to Phase Voltage (C-A) 4800 = 480.0 Vrms Range: 0 to 1000 Vrms
V_TUNE_A_THD	73	Tuned Circuit Voltage Phase AB THD	Filter Tune Phase to Phase Voltage THD (A-B) 10 = 1.0%
V_TUNE_B_THD	74	Tuned Circuit Voltage Phase BC THD	Filter Tune Phase to Phase Voltage THD (B-C) 10 = 1.0%
V_TUNE_C_THD	75	Tuned Circuit Voltage Phase CA THD	Filter Tune Phase to Phase Voltage THD (C-A) 10 = 1.0%
I_TUNE_A_RMS	76	Tuned Circuit Current Phase A RMS	Filter Tune Phase to Phase Current (A) 920 = 92.0 Arms Range: 0 to 1000 Arms
I_TUNE_B_RMS	77	Tuned Circuit Current Phase B RMS	Filter Tune Phase to Phase Current (B) 920 = 92.0 Arms Range: 0 to 1000 Arms
I_TUNE_C_RMS	78	Tuned Circuit Current Phase C RMS	Filter Tune Phase to Phase Current (C) 920 = 92.0 Arms Range: 0 to 1000 Arms
I_TUNE_A_THD	79	Tuned Circuit Current Phase A THD	Filter Tune Phase to Phase Current (A) THD 10 = 1.0%
I_TUNE_B_THD	80	Tuned Circuit Current Phase B THD	Filter Tune Phase to Phase Current (B) THD 10 = 1.0%
I_TUNE_C_THD	81	Tuned Circuit Current Phase C THD	Filter Tune Phase to Phase Current (C) THD 10 = 1.0%
P_LINE_APPARENT_TOTAL	100	Line apparent power, (kVA)	Total Filter input apparent power. Range: 0 to 1000 kVA
P_LINE_REAL_TOTAL	101	Line real power, (kW)	Total Filter input real power. Range: 0 to 1000 kW
P_LINE_REACTIVE_TOTAL	102	Line reactive power, (kVAR)	Total Filter input reactive power: Negative number indicates inductive power. Positive number indicates capacitive power. Range: -1000 to 1000 kVAR

			Filter input Displacement Power Factor
			Negative value indicates lagging power factor.
P_LINE_POWER_FACTOR	103	Line power factor, (%)	1,000 = 1.00 Unity PF -950 = 0.95 Lagging PF
			950 = 0.95 Leading PF
			Range: -1000 to 1000
P_LOAD_APPARENT_TOTAL	120	Load apparent power, (kVA)	Total Filter output apparent power Range: 0 to 1000 kVA
P_LOAD_REAL_TOTAL	121	Load real power, (kW)	Total Filter output real power Range: 0 to 1000 kW
			Total Filter output reactive power:
P_LOAD_REACTIVE_TOTAL	122	Load reactive power, (kVAR)	Negative number indicates inductive power. Positive number indicates capacitive power
			Range: -1000 to 1000 kVAR
			Filter output Displacement Power Factor
			Negative values indicate lagging power factor.
P_LOAD_POWER_FACTOR	123	Load power factor, (%)	1,000 = 1.00 Unity PF -950 = 0.95 Lagging PF 950 = 0.95 Leading PF
			Range: -1000 to 1000
P_LOAD_REAL_MEAS	124	Measured Load real power, (kW)	
I_LINE_A_HARM_1	140	Line Current Fundamental Phase A	
I_LINE_A_HARM_3	141	Line Current 3rd Harmonic Phase A	Not EtherNet Enabled 10 = 1.0%
I_LINE_A_HARM_5	142	Line Current 5th Harmonic Phase A	Range: 0 to 100 %
I_LINE_A_HARM_7	143	Line Current 7th Harmonic Phase A	
I_LINE_A_HARM_11	144	Line Current 11th Harmonic Phase A	
I_LINE_A_HARM_13	145	Line Current 13th Harmonic Phase A	Not EtherNet Enabled 10 = 1.0% Range: 0 to 100 %

	1		
I_LINE_A_HARM_17	146	Line Current 17th Harmonic Phase A	
I_LINE_A_HARM_19	147	Line Current 19th Harmonic Phase A	Not EtherNet Enabled
I_LINE_A_HARM_23	148	Line Current 23rd Harmonic Phase A	 10 = 1.0% Range: 0 to 100 %
I_LINE_A_HARM_25	149	Line Current 25th Harmonic Phase A,	
I_LINE_B_HARM_1	160	Line Current Fundamental Phase B	
I_LINE_B_HARM_3	161	Line Current 3rd Harmonic Phase B	Not EtherNet Enabled
I_LINE_B_HARM_5	162	Line Current 5th Harmonic Phase B	10 = 1.0% Range: 0 to 100 %
I_LINE_B_HARM_7	163	Line Current 7th Harmonic Phase B	
I_LINE_B_HARM_11	164	Line Current 11th Harmonic Phase B	
I_LINE_B_HARM_13	165	Line Current 13th Harmonic Phase B	
I_LINE_B_HARM_17	166	Line Current 17th Harmonic Phase B	Not EtherNet Enabled
I_LINE_B_HARM_19	167	Line Current 19th Harmonic Phase B	10 = 1.0% Range: 0 to 100 %
I_LINE_B_HARM_23	168	Line Current 23rd Harmonic Phase B	
I_LINE_B_HARM_25	169	Line Current 25th Harmonic Phase B	
I_LINE_C_HARM_1	180	Line Current Fundamental Phase C	
I_LINE_C_HARM_3	181	Line Current 3rd Harmonic Phase C	Not EtherNet Enabled
I_LINE_C_HARM_5	182	Line Current 5th Harmonic Phase C	10 = 1.0% Range: 0 to 100 %
I_LINE_C_HARM_7	183	Line Current 7th Harmonic Phase C	
I_LINE_C_HARM_11	184	Line Current 11th Harmonic Phase C	
I_LINE_C_HARM_13	185	Line Current 13th Harmonic Phase C	Not EtherNet Enabled
I_LINE_C_HARM_17	186	Line Current 17th Harmonic Phase C	Range: 0 to 100 %

I_LINE_C_HARM_19	187	Line Current 19th Harmonic Phase C	
I_LINE_C_HARM_23	188	Line Current 23rd Harmonic Phase C	Not EtherNet Enabled 10 = 1.0% Range: 0 to 100 %
I_LINE_C_HARM_25	189	Line Current 25th Harmonic Phase B	
CNT_CLOSED	200	Filter Tuned Circuit Contactor closed	Indicates the status of the Filters tuned circuit contactor. 0 = Contactor Closed 1 = Contactor Open
SYS_POWER_ON	201	Filter Powered On	Indicates if the filter has input power available 0 = Power Off 1 = Power On
SYS_STATUS_OK	202	Filter Status OK	Indicates filters status 0 = Filter is operating 1 = Filter has indicated status warning
SYS_AT_CAPACITY	203	Filter at Maximum Capacity	Indicates if the filter is running at its maximum current capacity 0 = Nominal 1 = At Capacity
T_AMBIENT	204	Filter Controls Temperature	Board will give a status condition of overtempt if it exceeds 75C or under-temp if the temperature descends past -40C Range: -75C to 75C
STATUS_FILTER_A	210	Filter Status Detection Active A Bit Mask	Reference Filter Status Table in IOM Read only display of the Filter Status detection for register A bit mask.
STATUS_FILTER_B	211	Filter Status Detection Active B Bit Mask	Notifies the user of any current faults Range: 0 to 65535
STATUS_LINE	212	Line Status Detection Active Bit Mask	Reference Filter Status Table in IOM Read only display of the Filter Line detection register bit mask. Notifies the user of any current faults Range: 0 to 65535
STATUS_FILTER_LOAD	213	Filter Load Status Detection Bit Mask	Reference Filter Status Table in IOM Read only display of the Filter Load detection register bit mask. Notifies the user of any current faults Range: 0 to 65535

STATUS_FILTER_A_ENABLE_RO	220	Filter Status A Detection Enable Bit Mask	Reference Filter Status Table in IOM To enabled desired status detections, enter bit mask from table by converting to decimal Range: 0 to 65535
STATUS_FILTER_B_ENABLE_RO	221	Filter Status B Detection Enable Bit Mask	- Kange. 0 to 00000
STATUS_LINE_ENABLE_RO	222	Line Status Detection Enable Bit Mask	Reference Filter Status Table in IOM To enabled desired status detections, enter bit mask from table by converting to decimal Range: 0 to 65535
STATUS_FILTER_LOAD_ ENABLE_RO	223	Filter Load Status Detection Enable Bit Mask	Reference Filter Status Table in IOM To enabled desired status detections, enter bit mask from table by converting to decimal Range: 0 to 65535
STATUS_FILTER_A_ RELAY_ACTION_RO	230	Filter Status A Relay Action Enable Bit Mask	Not EtherNet Enabled Reference Filter Status Table in IOM
STATUS_FILTER_B_ RELAY_ACTION_RO	231	Filter Status B Relay Action Enable Bit Mask	To enabled desired status detections, enter bit mask from table by converting to decimal Range: 0 to 65535
STATUS_LINE_RELAY_ ACTION_RO	232	Line Status Relay Action Enable Bit Mask	Not EtherNet Enabled Reference Filter Status Table in IOM To enabled desired status detections, enter bit mask from table by converting to decimal Range: 0 to 65535
STATUS_FILTER_LOAD_ RELAY_ACTION_RO	233	Filter Load Status Relay Action Enable Bit Mask	Not EtherNet Enabled Reference Filter Status Table in IOM To enabled desired status detections, enter bit mask from table by converting to decimal Range: 0 to 65535
STATUS_FILTER_A_ CNT_ACTION_RO	240	Filter Status A Tune Contactor Action Enable Bit Mask	Not EtherNet Enabled Reference Filter Status Table in IOM
STATUS_FILTER_B_ CNT_ACTION_RO	241	Filter Status B Tune Contactor Action Enable Bit Mask	To enabled desired status detections, enter bit mask from table by converting to decimal Range: 0 to 65535
STATUS_LINE_CNT_ACTION_RO	242	Line Status Tune Contactor Action Enable Bit Mask	Not EtherNet Enabled Reference Filter Status Table in IOM To enabled desired status detections, enter bit mask from table by converting to decimal Range: 0 to 65535

STATUS_FILTER_LOAD_ CNT_ACTION_RO	243	Filter Load Status Tune Contactor Action Enable Bit Mask	Not EtherNet Enabled Reference Filter Status Table in IOM To enabled desired status detections, enter bit mask from table by converting to decimal Range: 0 to 65535
SYS_CONTROL_MODE_RO	250	Control Mode	Not EtherNet Enabled Read Only of the Contactor Control Mode Allows the user to keep the contactor always off/on, auto turn on/off based on desired load percentage or kVAR, external relay input, in debug close mode. 0 = Always Open 1 = Always Closed 2= Auto load 3 = Auto kVAR 4 = External Control Input 5 = No contactor 6 = Diagnostic Always Close
TRACE_GO_DONE_RO	251	Capture GO/DONE command (set to start capture)	Not EtherNet Enabled Indicates whether waveform data is being captured 0 = Capture Done 1 = Start Capture
SYS_AUTO_FAULT_RESET_RO	252	Enable Auto Fault Clear/Re Start	Not EtherNet Enabled Displays auto contactor reset 0 = Disabled 1 = Enabled
CT_RATIO_RO	253	Line/Load Current CT Ratio	Not EtherNet Enabled Dual Turned Circuit Current Transformer (CT) ratios. Note: Only required for units with two tuned circuits. XXXX:5 where XXXX is the primary turns count of the CT in tenths. 100 = 1000:5 50 = 500:5 Range 5 to 10000

_			
PARAM_ACCESS_LEVEL_RO	254	Parameter access level	Ethernet Enabled but Mapped to Ethernet Instance: DiagFB7 Determines the Level of parameter access to read and/or change parameter inputs 0 = Base access 1 = Tech access 2 = Factory access
PARAM_STATE	255	Parameter state	Indicates the present state of the parameter state machine. 00 = INIT_START 01 = INIT_DELAY 02 = INIT_E2_CHIP 03 = INIT_FLASH_TEST 04 = WRITE_FLASH_TEST 05 = SETUP_FLASH 06 = SETUP_NON_CAL_FLASH 07 = SAVE_CURRENT_VALUES 08 = STAMP_EE 09 = INIT_FROM_DEFAULTS 10 = INIT_FROM_FLASH 11 = EXECUTE_PARAM_FUNCTIONS 12 = PARAM_INIT_FINISH 13 = RESTORE_DEFAULTS 14 = RESTORE_NON_CAL_DEFAULTS 15 = INIT_SAVE_CURRENT_VALUES 16 = REBOOT 17 = SETUP_UNIT_CAL_DEFAULTS
SYS_STATE	256	System state	Indicates the present state of the system state machine (Read Only) 00 = Initialization State Machine 01 = Initialization Parameters 02 = Power on Delay 03 = Unit Self State Configuration Check 04 = Reset 05 = Force Open Contactor 06 = Force Close Contactor 07 = Auto Load Open 08 = Auto Load Open 08 = Auto Load Close 09 = Auto kVAR Close 10 = Auto kVAR Open 11 = External Open 12 = External Close 13 = No Contactor 14 = Contactor Closed Inhibited 15 = Calibrate offsets 16 = Calibrate Magnitude 17 = No Communication 18 = Communication configuration 19 = PCB Calibration Check 20 = Unit Calibration Check 21 = Pre-Calibration Check 22 = Unit in Contactor Debug Close State

CNT_STATUS	257	Contactor command status	Indicates the present contactor status command
RATED_VOLTAGE_RO	260	Unit Rated Voltage	Not EtherNet Enabled Filter's Rated Voltage 4800 = 480.0 Vrms Range: 120 to 690 Vrms
RATED_CURRENT_RO	261	Unit Rated Current	Not EtherNet Enabled Filter's rated Current 1255 = 125.5 Arms Range: 3 to 1500 Arms
RATED_FREQUENCY_RO	262	Unit Rated Frequency, (Hz)	Not EtherNet Enabled Filter's Rated Frequency 60 = 60Hz
CNT_CLOSE_LOAD_ THRESHOLD_RO	270	Contactor Close Threshold for Load Control, (% rated current)	Not EtherNet Enabled Contactor Close Threshold based on the load. Default: 30 = 30% Range: 10 to 100%
CNT_CLOSE_LOAD_ HYSTERESIS_RO	271	Contactor Close/Open Hysteresis for Load Control, (% rated current)	Not EtherNet Enabled Contactor will open/reclose when it reaches the hysteresis percentage If Contactor threshold is set 50% and this parameter is set to 5%, the contactor will reclose when the load reaches 55% load. Default: 5 = 5% Range: 2 to 50%
CNT_CLOSE_KVAR_ THRESHOLD_RO	272	Contactor Close Threshold for kVAR Control, (kVAR)	Not EtherNet Enabled Contactor close threshold for kVAR control Range: 0 to 1,000 kVAR
CNT_CLOSE_KVAR_ HYSTERESIS_RO	273	Contactor Close/Open Hysteresis for kVAR Control, (kVAR)	Not EtherNet Enabled Contactor will open when it reaches the hysteresis percentage Default: 10 = 10% Range: 5% to 100%
CNT_CLOSE_DELAY_RO	274	Contactor Close Delay, (sec)	Not EtherNet Enabled Displays set value of contactor closed delay time Default: 5 seconds Range: 1 to 3600 seconds
CNT_OPEN_DELAY_RO	275	Contactor Open Delay, (sec)	Not EtherNet Enabled Displays set value of contactor open delay time Default: 5 seconds Range: 1 to 3600 Seconds

5.0 PQconnect Connectivity

CNT_AUTO_RECLOSE_ DELAY_RO	280	Contactor Auto Re-Close Delay Time, (sec)	Not EtherNet Enabled Indicates contactor auto reclose delay time Default: 300 seconds Range: 120 to 36000 seconds
CNT_POWER_ON_DELAY_RO	281	System Power On Start Delay, (sec)	Not EtherNet Enabled Indicates contactors power on delay time, the amount of time to expire after reboot. Default: 0 seconds Range: 0 to 3600 seconds
CNT_AUTO_RECLOSE_ ATTEMPTS_RO	282	Contactor Auto Re-Close Number Attempts Allowed	Not EtherNet Enabled Indicates the max number of reclose attempts of contactor when the internal contactor has Auto Reset Enabled. Default: 5 attempts Range: 1 to 15
CNT_AUTO_RECLOSE_ TIMESPAN_RO	283	Contactor Auto Re-Close Max Attempt Time Span, (Sec)	Not EtherNet Enabled Displays the time interval for the number reclose attempts to reset. Default: 1800 seconds Range: 300 to 3600 seconds
SYS_AUTO_RECLOSE_ TIMER_RO	284	Contactor Auto Re-Close Timer Present Value, (sec)	Not EtherNet Enabled Displays count down time for contactor to reclose timespan. Default: 1800 seconds Range: 300 to 3600 seconds
SYS_CNT_MIN_OFF_TIME_RO	285	Minimum Off Time for Contactor Re-Closures, (sec)	Not EtherNet Enabled Minimum time off for contactor re-closures Default: 60 seconds Range: 30 to 300 seconds
SYS_CNT_MIN_OFF_TIMER	286	Seconds Remaining on Min Off Timer for Contactor Re- Closures, (sec)	Not EtherNet Enabled Displays count down time for contactor re- closures. Once this timer expires contactor will change the contactor state to close. Default: 60 seconds Range: 30 to 300 seconds
MB_SLAVE_ADDRESS_RO	300	Modbus Slave Address	Not EtherNet Enabled Modbus Slave Address Default: 10 Range: 0 to 255
MB_BAUD_RATE_RO	301	Line Current Estimation Decay Phase A, (bits per second)	Not EtherNet Enabled Modbus Baud Rate 11520 = 115200 baud rate 960 = 9600 baud rate 3840 = 38400 baud rate

MB_PARITY_RO	302	Modbus Parity	Not EtherNet Enabled 0 = None 1 = Odd 2 = Even
RELAY_INPUT_STATUS	320	Digital Relay Input Status	Filter Relay Input Status, 0b00 = Relay 1 (Temp Okay), Relay 2 (Temp Okay) 0b01 = Relay 1 (Temp Hot), Relay 2 (Temp Okay) 0b10 = Relay 1 (Temp Okay), Relay 2 (Temp Too Hot) 0b11 = Relay 1 (Temp Hot), Relay 2 (Temp Hot)
RELAY_INPUT_1_CONFIG_RO	321	Digital Input 1 Configuration	Not EtherNet Enabled Customer External Control Input 1 Read- Only: J7 of the PCB 0 = Disabled 1 = Tuning Reactor Thermal Switch Input 2 = Line Reactor Thermal Switch Input 3 = Reset Command 4 = External Control Input
RELAY_INPUT_2_CONFIG_RO	322	Digital Input 2 Configuration	Not EtherNet Enabled Customer External Control Input 2 Read- Only: J8 of the PCB 0 = Disabled 1 = Tuning Reactor Thermal Switch Input 2 = Line Reactor Thermal Switch Input 3 = Reset Command 4 = External Control Input
SYS_SERIAL_NUM_2_RO	350	MS Portion of Job # of Unit Serial #	Not EtherNet Enabled Unit serial number section - upper 16 bits of 32-bit unit job number Parameter contains UUUU in the UUUULLLL-NN serial number format.
SYS_SERIAL_NUM_1_RO	351	LS Portion of Job # of Unit Serial #	Not EtherNet Enabled Unit serial number section - lower 16 bits of 32-bit unit job number Parameter contains LLLL in the UUUULLLL-NN serial number format.

			Not EtherNet Enabled
SYS_SERIAL_NUM_0_RO	352	Line # of Unit Serial #	Unit serial number section - two-digit unit number Parameter contains NN in the UUUULLLL- NN serial number format.
PCB_SERIAL_NUM_1_RO	353	MS Portion of PCB Serial #	Not EtherNet Enabled PCB serial number section - upper 16 bits of 32-bit unit job number Parameter contains UUUU in the UUUULLLL-NNN serial number format.
PCB_SERIAL_NUM_0_RO	354	LS Portion of PCB Serial #	Not EtherNet Enabled PCB serial number section - lower 16 bits of 32-bit unit job number Parameter contains LLLL in the UUUULLLL-NNN serial number format.
PCB_TEST_NUM_RO	355	Test Number of the PCB Serial Number	Not EtherNet Enabled PCB serial number section - three-digit unit number Parameter contains NNN in the UUUULLLL- NNN serial number format.
SYS_DS_MODE	360	Data Simulation Mode Active	Indicates if the PQconnect board is in data simulation mode 0 = Not in Data Sim Mode 1 = Data Sim Mode
CONFIG_MODE_ACTIVE	365	Active Feedback Sensing Configuration Mode	Indicates PQconnect board current sensing mode. 0 = Config Sensing Mode Null (Error) 1 = Config Sensing Mode is Auto Selecting (Current detecting its sensing mode) 2 = Config Sensing Mode is ABC (Uses all 3 phases for sensing, 8 op-amp configuration) 3 = Config Sensing Mode is AC (Uses Phase A and C for sensing, uses 6 op- amp configuration)
BGM_PASSKEY_A	375		Ethernet Enabled but Mapped to Ethernet Instance: DiagFB1 Read only Value of BGM Password - High Bytes Range: 0 to 65535

BGM_PASSKEY_B	376		Ethernet Enabled but Mapped to Ethernet Instance: DiagFB2 Read Only value of BGM password set low bytes. Range: 0 to 65535
BGM_SECUIRTY_LEVEL_RO	377	Wireless Security level	Not EtherNet Enabled BGM Security level.High Security mode blocks new pairing requests. Passkey changes each time a connection is attempted.0 = Low Security 1 = High Security
BGM_NUMERIC_ID_RO	378	Wireless Numeric Identifier	Not EtherNet Enabled Read only value of BGM Numeric ID Default: 0
BGM_PAIRING_MODE_RO	379	Wireless Pairing Mode	Not EtherNet Enabled Read Only value of BGM pairing mode. 0 = No active request 1 = Active request
BGM_MODULE_STATUS	380	Wireless Pairing Status	Status of the BGM (Bluetooth LE module) 0 = Idle 1 = Advertising 2 = Connected 3 = Not Responding 4 = Radio Disabled 5 = Firmware Mismatch
FIELDBUS_STATUS_A	381	Field Bus Communication Status A Register	Ethernet Module Status Register A Notifies the User of the status of the EtherNet/IP Module.
FIELDBUS_STATUS_B	382	Field Bus Communication Status B Register	Ethernet Module Status Register B Notifies the User of the status of the EtherNet/IP Module.
ETH_IP_ADDR_A	383	EtherNet/IP Address Upper 16 Bits	Parameter Database Only, Used to Read EtherNet/IP Address.
ETH_IP_ADDR_B	384	EtherNet/IP Address Lower 16 Bits	
ETH_SUB_NET_A	385	EtherNet/IP Subnet Upper 16 Bits	Parameter Database Only, Used to Read EtherNet/IP Subnet.
ETH_SUB_NET_B	386	EtherNet/IP Subnet Lower 16 Bits	
ETH_DEF_GATEWAY_A	387	EtherNet/IP Gateway Upper 16 Bits	Parameter Database Only, Used to Read EtherNet/IP Gateway.
ETH_DEF_GATEWAY_B	388	EtherNet/IP Gateway Lower 16 Bits	

FB_CONFIG	389	Fieldbus Configuration Status	Parameter Database Only, bit 0 is DCHP ON= 0 OFF=1
FB_LED	390	Fieldbus Debug LED's	Parameter Database Only, two bits per each of the 8 LEDs with 0b00=off, 0b01=on, 0b10=blinking, 0b11=not set
ETH_MAC_ADDR_A	391	EtherNet/IP MAC Address Upper 16 Bits	
ETH_MAC_ADDR_B	392	EtherNet/IP MAC Address Middle 16 Bits	Parameter Database Only , Used to Read EtherNet/IP MAC Address Upper 16 bits.
ETH_MAC_ADDR_C	393	EtherNet/IP MAC Address Lower 16 Bits	
SYS_NULL_STAT	400	Factory PCB Calibration Status	System Calibration Status (PCB Cal Status) Read-only 0 = Not Calibrated 1 = PCB Calibrated
SYS_NULL_TMR	401	Factory PCB Calibration Timer Value	System null timer - Indicates whether the unit is calibrating. In units of 10s of milliseconds (600 = 6 seconds)
SYS_INT_HB	402	System Interrupt Heartbeat Counter	Processor Internal Heartbeat Counter Counts and rolls over to zero used to verify Processor Clock Range: 0 to 65535
SYS_BG_HB	403	System Background Heartbeat Counter	Processor background heartbeat Counter Counts and rolls over to zero used to verify processor clock operation Range: 0 to 65535
SYS_MAG_CAL_STATUS	404	Unit Calibration Completed Status	Six-bit bitmask of Calibration Status of Current Channels 0b000001 = channel 1 Cal complete 0b000011 = channel 1 and 2 Cal complete 0b111111 = channel 1 to 6 Cal complete
SYS_USAGE_MIN	450	Controls Processor Minimum Cycle Time Usage, (10 = 1.0%)	
SYS_USAGE_MAX	451	Processor Max Cycle Usage, (10 = 1.0%)	

			1
SYS_USAGE_AVG	452	Processor Avg Cycle Usage, (10 = 1.0%)	
SYS_PEEK_0	453	Diagnostic Peek Value 0	
SYS_PEEK_1	454	Diagnostic Peek Value 1	A diagnostic Feedback variable used by
SYS_PEEK_2	455	Diagnostic Peek Value 2	Production and Engineering for Testing and Field Support.
SYS_PEEK_3	456	Diagnostic Peek Value 3	
NO_LOAD_CAP_CURRENT	460	Unit rated capacitance configuration, (Farads)	Expected tune circuit current at no load in tenths of amps. Range: 0 to 65535
KVAR_EFFECTIVE	461	Effective kVAR after applying kVAR factor, (kVAR)	Effective nameplate kVAR after kVAR factor. Used for kVAR contactor control 10 = 10KVAR Range: -32768 to 32767
PF_KVAR_SLOPE	462	Slope factor applied to nameplate kVAR for kVAR contactor control.	Slope factor applied to nameplate kVAR for kVAR contactor control. Range: -32768 to 32767
PF_KVAR_INTERCEPT	463	Intercept factor applied to nameplate kVAR for kVAR contactor control, (kVAR)	Intercept factor applied to nameplate kVAR for kVAR contactor control. Range: 0 to 65535
HISTORY_LOG_STATUS	464	History Log Status Value	Indicates the Status of the History Log 0 = Initializing History Log 1 = Successfully Reading/Storing History 2 = Out of Bounds history register 3 = EEPROM is busy, Try Again Later
BGM_PASSKEY_A_EIP	480	Diagnostic Feedback Parameter 1	Ethernet Enabled but Mapped to Modbus Instance: BGM_PASSKEY_A Read only Value of BGM Password - High Bytes Range: 0 to 65535
BGM_PASSKEY_B_EIP	481	Diagnostic Feedback Parameter 2	Ethernet Enabled but Mapped to Modbus Instance: BGM_PASSKEY_B Read only Value of BGM Password - Low Bytes Range: 0 to 65535
SYS_COM_ACTIVE	484	System Communication Status, connect to EtherNet/IP Address: DiagFb5	System Communication Status, bit 0 = Modbus RTU active, bit 1 = Bluetooth active, bit 2 = EtherNet/IP active,

SYS_CNT_MIN_OFF_TIMER_EIP	485	Diagnostic Feedback Parameter 6	Ethernet Enabled but Mapped to Modbus Instance: SYS_CNT_MIN_OFF_TIMER Displays count down time for contactor re- closures. Once this timer expires contactor will change the contactor state to close. Default: 60 seconds Range: 30 to 300 seconds
PARAM_ACCESS_LEVEL_EIP	486	Diagnostic Feedback Parameter 7	Ethernet Enabled but Mapped to Modbus Instance: PARAM_ACCESS_LEVEL_RO Determines the Level of parameter access to read and/or change parameter inputs 0 = Base access 1 = Tech access 2 = Factory access

Setpoints Register Map

Parameter Name	I/O Register Address Offsets	Description	Default & Ranges	Notes
PARAM_USER_CMD_REQ	500	Parameter Save/Load Command	Default:1 Range:0 to 300	Note that defaulting the flash will clear all calibration data and require that the calibration procedure be re-run. 0 = Init State 1 = Stop Update 9 = Save Curnt. Values to Flash 21 = Set User Access 25 = Set Tech Access 30 = Set Factory Access 42 = Reboot/Reset PQconnect 100 = Clear History Log 200 = Restore Defaults to Flash 255 = Erase All Calibration Data 300 = Erase Unit Calibration Data

TRACE_GO_DONE	501	Waveform Capture Trigger Command	Default:0 Range:0 to 1	Indicates whether waveform data is being captured 0 = Capture Done 1 = Start Capture
SYS_RESET	502	Contactor Reset Command	Default:0 Range:0 to 1	Reset contactor 0 = No Command 1 = Reset Contactor Closed
PARAM_KEY_A	503	Parameter Access Key Value A	Default:0 Range:0 to 65535	Read/write parameters under Tech Access
PARAM_KEY_B	504	Parameter Access Key Value B	Default:0 Range:0 to 65535	Read/write parameters under Tech Access
CT_RATIO	505	Current Transformer CT Ratio Primary Amps Relative to Five Amp Secondary	Default:50 Range:5 to 10000	Dual Turned Circuit Current Transformer (CT) ratios Note: Only required for units with two tuned circuits XXXX:5 where XXXX is the primary turns count of the CT 1000 = 1000:5 Range 5 to 10000
CURRENT_WAVEFORM_ DATA_FORMAT	506	Waveform Data Format	Default:0 Range:0 to 1	Changes the scaling of the waveforms displayed on PQvision 0 = A / 10 1 = Per Unit (10=1.0A or per unit with base of 16384 counts)
SYS_CONTROL_MODE	510	Contactor Control Mode	Default:2 Range:0 to 6	Contactor Control Mode Allows the user to keep the contactor always off/on, auto turn on/off based on desired load percentage or kVAR, external relay input, in debug close mode. 0 = Always Open 1 = Always Closed 2= Auto load 3 = Auto kVAR 4 = External Control Input 5 = No contactor 6 = Diagnostic Always Close
SYS_AUTO_CONTACTOR_ CLOSE	511	Enable Contactor Auto to Reclose	Default:0 Range:0 to 1	Contactor auto reclose, this will attempt to reclose the contactor after it has been open through a status condition 0 = Disable 1 = Enable
RATED_CURRENT	520	Unit Rated Current	Default:2500 Range:30 to 15000	Filter rated Current. 10 = 1.0 Amps Range: 3 to 1500 Arms

RATED_VOLTAGE	521	Unit Rated Voltage	Default:4800 Range:1200 to 6900	Filter Rated Voltage 10 = 1.0 Volts Range: 120 to 690 Vrms
RATED_FREQUENCY	522	Unit Rated Utility Grid Frequency, (Hz)	Default:60 Range:50 to 60	Filter Rated Frequency
TEST_VOLTAGE	524	Unit Test Voltage, (10 = 1.0 Volts)	Default:0 Range:0 to 6900	Factory Used Parameter. Used to check if Filter was configured with
TEST_FREQUENCY	525	Unit test Frequency, (Hz)	Default:0 Range:0 to 60	the correct test Voltage and frequency.
STATUS_FILTER_A_ENABLE	530	Filter Status Detection Enable A Bit Mask	Default:65535 Range:0 to 65535	
STATUS_FILTER_B_ENABLE	531	Filter Status Detection Enable B Bit Mask	Default:65535 Range:0 to 65535	Not EtherNet Enabled
STATUS_LINE_ENABLE	532	Line Status Detection Enable Bit Mask	Default:65535 Range:0 to 65535	
STATUS_FILTER_LOAD_ ENABLE	533	Filter Load Status Detection Enable Bit Mask	Default:65535 Range:0 to 65535	Not EtherNet Enabled Reference Filter Status Table in IOM To enabled desired status detections, enter bit mask from table by converting to decimal Range: 0 to 65535
STATUS_FILTER_A_RELAY_ ACTION	540	Filter Status A Relay Action Enable Bit Mask	Default:9 Range:0 to 65535	Reference Filter Status Table in IOM To Enable desired status
STATUS_FILTER_B_RELAY_ ACTION	541	Filter Status B Relay Action Enable Bit Mask	Default:49151 Range:0 to 65535	detections, enter bit mask from table by converting to decimal. If a status is active and the bit corresponding to that status in this mask is set, the relay will be activated. 0 = Disabled 65535 = All enabled
STATUS_LINE_RELAY_ ACTION	542	Line Status Relay Action Enable Bit mask	Default:71 Range:0 to 65535	Reference Filter Status Table in IOM To Enable desired status detections, enter bit mask from table by converting to decimal. If a status is active and the bit corresponding to that status in this mask is set, the relay will be activated. 0 = Disabled 65535 = All enabled
STATUS_FILTER_LOAD_ RELAY_ACTION	543	Filter Load Status Relay Action Enable Bit Mask	Default:63 Range:0 to 65535	To Enable desired status detections, enter bit mask from table by converting to decimal. If a status is active and the bit corresponding to that status in this mask is set, the relay will be activated. Reference load status detection bits table 0 = Disabled 65535 = All Enabled

STATUS_FILTER_A_ CNT_ACTION	550	Filter Status A Tune Contactor Action Enable Bit Mask	Default:1 Range:0 to 65535	Reference Filter Status Table in IOM To Enable desired status
STATUS_FILTER_B_ CNT_ACTION	551	Filter Status B Tune Contactor Action Enable Bit Mask	Default:36863 Range:0 to 65535	detections, enter bit mask from table by converting to decimal. If a status is active and the bit corresponding to that status in this mask is set, the contactor will be activated. 0 = Disabled 65535 = All enabled
STATUS_LINE_CNT_ACTION	552	Line Status Tune Contactor Action Enable Bit Mask	Default:64 Range:0 to 65535	Reference Filter Status Table in IOM To Enable desired status detections, enter bit mask from table by converting to decimal. If a status is active and the bit corresponding to that status in this mask is set, the contactor will be activated. 0 = Disabled 65535 = All enabled
STATUS_FILTER_LOAD_ CNT_ ACTION	553	Filter Load Status Tune Contactor Action Enable Bit Mask	Default:0 Range:0 to 65535	Reference Filter Status Table in IOM To Enable desired status detections, enter bit mask from table by converting to decimal. If a status is active and the bit corresponding to that status in this mask is set, the contactor will be activated. 0 = Disabled 65535 = All enabled
CNT_CLOSE_LOAD_ THRESHOLD	570	Contactor Close Threshold in Load Control Mode, (% rated current)	Default:30 Range:10 to 100	Contactor close threshold in percent rated current*
CNT_CLOSE_LOAD_ HYSTERESIS	571	Contactor Close/Open Hysteresis in Load Control Mode, (percent rated current)	Default:5 Range:2 to 50	Contactor will open when it reaches the hysteresis *
CNT_CLOSE_KVAR_ THRESHOLD	572	Contactor Close Threshold for kVAR Control Mode, (kVAR)	Default:0 Range: -1000 to 1000	Contactor close threshold for kVAR control negative setpoint = lagging target positive setpoint = leading target
CNT_CLOSE_KVAR_ HYSTERESIS	573	Contactor Close/Open Hysteresis in kVAR Control Mode, (%)	Default:10 Range:5 to 100	Contactor will open when it reaches the hysteresis
CNT_CLOSE_DELAY	574	Contactor Close Delay Time, (sec)	Default:5 Range:1 to 3600	

CNT_OPEN_DELAY	575	Contactor Open Delay Time, (sec)	Default:5 Range:1 to 3600	
SYS_PF_STEP_1_KVAR	576	Tune Circuit 1, (kVAR)	Default:5 Range:0 to 500	Desired filter kVAR for contactor to enable
SYS_PF_STEP_2_KVAR	577	Tune Circuit 2, (kVAR)	Default:5 Range:0 to 500	Filter Second Tuned Circuit kVAR (Only used for filters with dual tuned circuits)
CNT_AUTO_RECLOSE_DELAY	580	Contactor Auto Re-Close Delay Time, (sec)	Default:10 Range:120 to 65535	
CNT_POWER_ON_DELAY	581	System Power On Start Delay Time, (sec)	Default:1 Range:0 to 65535	
CNT_AUTO_RECLOSE_ ATTEMPTS	582	Contactor Auto Re- close Max Number Attempts Allowed	Default:5 Range:1 to 15	Maximum number of contactors auto re-close attempts allowed
CNT_AUTO_RECLOSE_ TIMESPAN	583	Contactor Auto Re- close Max Attempt Timespan, (sec)	Default:600 Range:300 to 65535	Maximum number of contactors auto re-close attempts time span
MB_SLAVE_ADDRESS	600	Modbus Device Slave address	Default:10 Range:1 to 247	Modbus Slave Address Range: 1 to 247
MB_BAUD_RATE	601	Modbus Device Baud Rate, (Bits per second)	Default:11520 Range:0 to 11520	Modbus Baud Rate 11520 = 115200 baud rate 960 = 9600 baud rate 3840 = 38400 baud rate
MB_PARITY	602	Modbus Device Parity	Default:2 Range:0 to 2	0 = None 1 = Odd 2 = Even
MB_SAVE_SET_FLAG	603	Mobutu Save New Settings	Default:0 Range:0 to 2	Modbus Flag Save Settings 0 = Not Saving Settings 1 = Saving Settings
BOOTLOADER_START	604	Bootloader Command	Default:0 Range:0 to 2	Used to navigate to bootloader, which launches the main program 0 = No Action 1 = Start Bootloader 2 = Start Recovery

RELAY_INPUT_1_CONFIG	610	Relay Input 1 Configuration	Default:0 Range:0 to 4	Customer External Control Input 1: J7 of the PCB 0 = Disabled 1 = Tuning Reactor Thermal Switch Input 2 = Line Reactor Thermal Switch Input 3 = Reset Command 4 = External Control Input
RELAY_INPUT_2_CONFIG	611	Relay input 2 configuration	Default:0 Range:0 to 4	Customer External Control Input 2: J8 of the PCB 0 = Disabled 1 = Tuning Reactor Thermal Switch Input 2 = Line Reactor Thermal Switch Input 3 = Reset Command 4 = External Control Input
V_LINE_OV_ONSET	620	Overvoltage Onset Threshold	Default:130 Range:100 to 150	percent rated voltage
V_LINE_OV_CLEAR	621	Overvoltage Clear Threshold	Default:125 Range:90 to 140	
V_LINE_OV_DELAY	622	Overvoltage Delay Time	Default:2 Range:1 to 3600	seconds
V_LINE_UV_ONSET	623	Undervoltage Phase Loss Onset Threshold	Default:75 Range:50 to 90	percent rated voltage
V_LINE_UV_CLEAR	624	Undervoltage Phase Loss Clear Threshold	Default:80 Range:60 to 100	percent rated voltage
V_LINE_UV_DELAY	625	Undervoltage Phase Loss Delay Time	Default:1 Range:1 to 3600	seconds
I_LINE_OC_ONSET	626	Overcurrent Onset Threshold	Default:150 Range:100 to 200	percent rated current
I_LINE_OC_CLEAR	627	Overcurrent Clear Threshold	Default:140 Range:90 to 190	
I_LINE_OC_DELAY	628	Overcurrent Delay Time	Default:5 Range:1 to 3600	seconds
I_LOAD_BALANCE_ONSET	640	Load Current Balance Onset Threshold	Default:75 Range:10 to 90	percent rated current
I_LOAD_BALANCE_CLEAR	641	Load Current Balance Clear Threshold	Default:80 Range:10 to 90	
I_LOAD_BALANCE_DELAY	642	Load Current Balance Delay Time	Default:4 Range:1 to 3600	seconds

I_LOAD_BALANCE_MIN_CUR RENT	643	Load Current Balance Minimum Detect Current	Default:50 Range:10 to 100	
I_TUNE_OC_ONSET	660	Tune Overcurrent Onset Threshold	Default:150 Range:100 to 200	percent rated current
I_TUNE_OC_CLEAR	661	Tune Overcurrent Clear Threshold	Default:140 Range:90 to 190	
I_TUNE_OC_DELAY	662	Tune Overcurrent Delay Time	Default:4 Range:1 to 3600	seconds
I_TUNE_UC_ONSET	663	Tune Circuit Fundamental Undercurrent Onset Threshold	Default:65 Range:10 to 100	percent rated current
I_TUNE_UC_CLEAR	664	Tune Circuit Fundamental Undercurrent Clear Threshold	Default:70 Range:15 to 100	
I_TUNE_UC_DELAY	665	Tune Circuit Fundamental Undercurrent Delay Time	Default:3 Range:1 to 3600	seconds
I_TUNE_BALANCE_ONSET	666	Tune Circuit Current Balance Onset Threshold	Default:75 Range:10 to 90	percent rated current
I_TUNE_BALANCE_CLEAR	667	Tune Circuit Current Balance Clear Threshold	Default:80 Range:10 to 90	
I_TUNE_BALANCE_DELAY	668	Tune Circuit Current Balance Delay Time	Default:2 Range:1 to 3600	seconds
T_AMBIENT_OT_ONSET	680	Controls Overtemperature Onset Threshold	Default:700 Range:100 to 850	10 = 1.0 deg C
T_AMBIENT_OT_CLEAR	681	Controls Overtemperature Clear Threshold	Default:600 Range:50 to 800	
T_AMBIENT_OT_DELAY	682	Controls Overtemperature Delay Time	Default:5 Range:1 to 3600	seconds
FAULT_HIGH_THD_ONSET	690	Voltage THD High Onset Threshold	Default:80 Range:20 to 200	percent rated voltage

FAULT_HIGH_THD_CLEAR	691	Voltage THD High Clear Threshold	Default:110 Range:20 to 200	
FAULT_HIGH_THD_DELAY	692	Voltage THD High Delay Time	Default:3 Range:1 to 3600	seconds
FAULT_PHASE_ROTATION	693	Phase Rotation Status Setpoint	Default:1 Range:0 to 2	Filter expected input phase orientation 0 = Undef 1 = Forward 2 = Reverse
SYS_MAG_CAL_ENABLE	700	System Magnitude Calibration	Default:0 Range:0 to 1	System Magnitude Calibration 0 = Disable 1 = Enable
SYS_I_LINE_CAL_A	710	Reference Calibration Current Line Phase A	Default:0 Range:0 to 65535	Input current measured on A phase of the filter 10 = 1.0A
SYS_I_LINE_CAL_B	711	Reference Calibration Current Line Phase B	Default:0 Range:0 to 65535	Input current measured on B phase of the filter 10 = 1.0A
SYS_I_LINE_CAL_C	712	Reference Calibration Current Line Phase C	Default:0 Range:0 to 65535	Input current measured on C phase of the filter 10 = 1.0A
SYS_I_TUNE_CAL_A	713	Reference Calibration current tune phase A	Default:0 Range:0 to 65535	Tune circuit current measured on A phase of the filter. 10 = 1.0A
SYS_I_TUNE_CAL_B	714	Reference Calibration current tune phase B	Default:0 Range:0 to 65535	Tune circuit current measured on B phase of the filter. 10 = 1.0A
SYS_I_TUNE_CAL_C	715	Reference Calibration current tune phase C	Default:0 Range:0 to 65535	Tune circuit current measured on C phase of the filter. 10 = 1.0A
SYS_MAG_CAL_TOL	716	Current Calculation magnitude calibration tolerance	Default:5 Range:0 to 15000	System Mag calibration Tolerance Value used by the PQconnect for setting the threshold for Calibrated reference currents Pass/Fail range. 20 = 0.02 amps tolerance.
I_LINE_EST_A_SCALAR	720	Magnitude Scalar for current calculation line phase A	Default:6000 Range: -32768 to 32767	
I_LINE_EST_B_SCALAR	721	Magnitude Scalar for current calculation line phase B	Default:6000 Range: -32768 to 32767	Value set by Factory, Unit Calibration Scalars that are stored after a successfully Unit Calibration. DO NOT MODIFY
I_LINE_EST_C_SCALAR	722	Magnitude Scalar for current calculation line phase C	Default:6000 Range: -32768 to 32767	

I_TUNE_EST_A_SCALAR	723	Magnitude Scalar for current calculation tune phase A	Default:4000 Range: -32768 to 32767	
I_TUNE_EST_B_SCALAR	724	Magnitude Scalar for current calculation tune phase B	Default:4000 Range: -32768 to 32767	Value set by Factory, Unit Calibration Scalars that are stored after a successfully Unit Calibration. DO NOT MODIFY
I_TUNE_EST_C_SCALAR	725	Magnitude Scalar for current calculation tune phase C	Default:4000 Range: -32768 to 32767	
V_LINE_SCALAR_A	730	Magnitude Scalar for line voltage phase AB	Default:5982 Range: -32768 to 32767	
V_LINE_SCALAR_B	731	Magnitude scalar for line voltage phase BC	Default:5982 Range: -32768 to 32767	Value set by Factory. DO NOT MODIFY
V_LINE_SCALAR_C	732	Magnitude scalar for line voltage phase CA	Default:5982 Range: -32768 to 32767	
V_LOAD_SCALAR_A	733	Magnitude Scalar for load voltage phase AB	Default:5982 Range: -32768 to 32767	Value set by Factory
V_LOAD_SCALAR_C	734	Magnitude Scalar for load voltage phase CA	Default:5982 Range: -32768 to 32767	DO NOT MODIFY
V_TUNE_SCALAR_A	735	Magnitude Scalar for tune voltage phase AB	Default:5982 Range: -32768 to 32767	Value set by Factory DO NOT MODIFY
V_TUNE_SCALAR_C	736	Magnitude Scalar for tune voltage phase CA	Default:5982 Range: -32768 to 32767	
I_LINE_SCALAR_A	737	Magnitude Scalar for line current CT phase A	Default:1091 Range: -32768 to 32767	Value set by Factory
I_LINE_SCALAR_C	738	Magnitude Scalar for line current CT phase C	Default:1091 Range: -32768 to 32767	DO NOT MODIFY
I_TUNE_SCALAR_A	739	Magnitude Scalar for tune current CT phase A	Default:1091 Range: -32768 to 32767	Value set by Factory
I_TUNE_SCALAR_C	740	Magnitude Scalar for tune current CT phase A	Default:1091 Range: -32768 to 32767	DO NOT MODIFY
T_AMBIENT_SCALAR	741	Magnitude Scalar for controls temperature	Default:12000 Range: -32768 to 32767	Value set by Factory DO NOT MODIFY
V_LINE_RMS_SCALAR	750	RMS Calculation scalar for line voltage	Default:437 Range: -32768 to 32767	Value set by Factory DO NOT MODIFY
V_LOAD_RMS_SCALAR	751	RMS Calculation scalar for load voltage	Default:437 Range: -32768 to 32767	Value set by Factory DO NOT MODIFY
I_LINE_RMS_SCALAR	752	RMS Calculation scalar for line current	Default:128 Range: -32768 to 32767	Value set by Factory DO NOT MODIFY

5.0 PQconnect Connectivity

I_LOAD_RMS_SCALAR	753	RMS Calculation scalar for load current	Default:128 Range: -32768 to 32767	Value set by Factory DO NOT MODIFY
SYS_CNT_MIN_OFF_TIME	800	Contactor Minimum open time	Default:10 Range:10 to 300	Seconds
I_TUNE_TAP_GAIN	801	Line Reactor Tap Turn coupling gain	Default:1820 Range: -32768 to 32767	Value set by Factory DO NOT MODIFY A zero value indicates that the Filter is configured for High THVD, and the tuning reactor is tapped to the Finish of the Filter's line reactor.
V_THD_SCALAR	802	Voltage THD Gain adjustment factor	Default:16384 Range: -32768 to 32767	Value set by Factory
I_THD_SCALAR	803	Current THD Gain adjustment factor	Default:16384 Range: -32768 to 32767	DO NOT MODIFY
V_THD_OFFSET	804	Voltage THD Offset adjustment factor	Default:0 Range: -32768 to 32767	Value set by Factory
I_THD_OFFSET	805	Current THD Offset adjustment factor	Default:0 Range: -32768 to 32767	DO NOT MODIFY
SYS_NULL_EN	820	Factory PCB calibration enable	Default:0 Range:0 to 1	
V_LINE_A_OFFSET	830	Line Voltage Offset Phase A	Default:2048 Range:0 to 4096	
V_LINE_B_OFFSET	831	Line Voltage Offset Phase B	Default:2048 Range:0 to 4096	Value set by Factory DO NOT MODIFY
V_LINE_C_OFFSET	832	Line Voltage Offset Phase C	Default:2048 Range:0 to 4096	
V_LOAD_A_OFFSET	833	Load Voltage Offset Phase A	Default:2048 Range:0 to 4096	Value set by Factory
V_LOAD_C_OFFSET	834	Load Voltage Offset Phase C	Default:2048 Range:0 to 4096	DO NOT MÓDIFY
V_TUNE_A_OFFSET	835	Tune Voltage Offset Phase A	Default:2048 Range:0 to 4096	- Value set by Factory
V_TUNE_C_OFFSET	836	Tune Voltage Offset Phase C	Default:2048 Range:0 to 4096	DO NOT MODIFY
V_DIFF_LINE_A_OFFSET	837	Reactor Diff Voltage Offset Phase A	Default:2048 Range:0 to 4096	
V_DIFF_LINE_B_OFFSET	838	Reactor Diff Voltage Offset Phase B	Default:2048 Range:0 to 4096	Value set by Factory DO NOT MODIFY
V_DIFF_LINE_C_OFFSET	839	Reactor Diff Voltage Offset Phase C	Default:2048 Range:0 to 4096]
V_DIFF_TUNE_A_OFFSET	840	Reactor Diff Voltage Offset Phase A	Default:2048 Range:0 to 4096	
V_DIFF_TUNE_B_OFFSET	841	Reactor Diff Voltage Offset Phase B	Default:2048 Range:0 to 4096	Value set by Factory DO NOT MODIFY
V_DIFF_TUNE_C_OFFSET	842	Reactor Diff Voltage Offset Phase C	Default:2048 Range:0 to 4096	

I_LINE_A_OFFSET	843	Line Current Offset Phase A for CT Input	Default:2048 Range:0 to 8192	
I_LINE_C_OFFSET	844	Line Current Offset Phase A for CT Input	Default:2048 Range:0 to 8192	Value set by Factory DO NOT MODIFY
I_LOAD_A_OFFSET	845	Load Current Offset Phase A for CT input	Default:2048 Range:0 to 8192	Value set by Factory
I_LOAD_C_OFFSET	846	Load Current Offset Phase A for CT input	Default:2048 Range:0 to 8192	DO NOT MODIFY
T_AMBIENT_OFFSET	847	Offset for Controls Temperature	Default:683 Range: -8192 to 8192	Value set by Factory DO NOT MODIFY
V_DIFF_LINE_A_SCALAR	850	Line Reactor Voltage Scalar Phase A	Default:16384 Range: -32768 to 32767	
V_DIFF_LINE_B_SCALAR	851	Line Reactor Voltage Scalar Phase B	Default:16384 Range: -32768 to 32767	Value set by Factory DO NOT MODIFY
V_DIFF_LINE_C_SCALAR	852	Line Reactor Voltage Scalar Phase C	Default:16384 Range: -32768 to 32767	
V_DIFF_TUNE_A_SCALAR	853	Tune Reactor Voltage Scalar Phase A	Default:16384 Range: -32768 to 32767	
V_DIFF_TUNE_B_SCALAR	854	Tune Reactor Voltage Scalar Phase B	Default:16384 Range: -32768 to 32767	Value set by Factory DO NOT MODIFY
V_DIFF_TUNE_C_SCALAR	855	Tune Reactor Voltage Scalar Phase C	Default:16384 Range: -32768 to 32767	
I_LINE_EST_A_INT_DECAY	860	Line Current Estimation Decay Phase A	Default:16375 Range:0 to 65535	
I_LINE_EST_B_INT_DECAY	861	Line Current Estimation Decay Phase B	Default:16375 Range:0 to 65535	Value set by Factory DO NOT MODIFY
I_LINE_EST_C_INT_DECAY	862	Line Current Estimation Decay Phase C	Default:16375 Range:0 to 65535	
I_TUNE_EST_A_INT_DECAY	863	Tune Current Estimation Decay Phase A	Default:16375 Range:0 to 65535	
I_TUNE_EST_B_INT_DECAY	864	Tune Current Estimation Decay Phase B	Default:16375 Range:0 to 65535	Value set by Factory DO NOT MODIFY
I_TUNE_EST_C_INT_DECAY	865	Tune Current Estimation Decay Phase C	Default:16375 Range:0 to 65535	
I_LINE_EST_A_SIN_NULL	870	Line Current Estimation Calibration Sine Phase A	Default:0 Range: -32768 to 32767	Value set by Factory
I_LINE_EST_A_COS_NULL	871	Line Current Estimation Calibration Cosine Phase A	Default:0 Range: -32768 to 32767	Not EtherNet Enabled DO NOT MODIFY Value set by Factory.

I_LINE_EST_B_SIN_NULL	872	Line Current Estimation Calibration Sine Phase B	Default:0 Range: -32768 to 32767	Value set by Factory
I_LINE_EST_B_COS_NULL	873	Line Current Estimation Calibration Cosine Phase B	Default:0 Range: -32768 to 32767	Not EtherNet Enabled DO NOT MODIFY Value set by Factory.
I_LINE_EST_C_SIN_NULL	874	Line Current Estimation Calibration Sine Phase C	Default:0 Range: -32768 to 32767	Value set by Factory
I_LINE_EST_C_COS_NULL	875	Line Current Estimation Calibration Cosine Phase C	Default:0 Range: -32768 to 32767	Not EtherNet Enabled DO NOT MODIFY Value set by Factory.
I_TUNE_EST_A_SIN_NULL	876	Tune Current Estimation Calibration Sine Phase A	Default:0 Range:-32768 to 32767	Value set by Factory
I_TUNE_EST_A_COS_NULL	877	Tune Current Estimation Calibration Cosine Phase A	Default:0 Range:-32768 to 32767	Not EtherNet Enabled DO NOT MODIFY Value set by Factory.
I_TUNE_EST_B_SIN_NULL	878	Tune Current Estimation Calibration Sine Phase B	Default:0 Range: -32768 to 32767	Value set by Factory
I_TUNE_EST_B_COS_NULL	879	Tune Current Estimation Calibration Cosine Phase B	Default:0 Range: -32768 to 32767	Not EtherNet Enabled DO NOT MODIFY Value set by Factory
I_TUNE_EST_C_SIN_NULL	880	Tune Current Estimation Calibration Sine Phase C	Default:0 Range: -32768 to 32767	Value set by Factory
I_TUNE_EST_C_COS_NULL	881	Tune Current Estimation Calibration Cosine Phase C	Default:0 Range: -32768 to 32767	Not EtherNet Enabled DO NOT MODIFY Value set by Factory
BLUETOOTH_ENABLE	900	Bluetooth Radio Enable	Default:1 Range:0 to 1	Set to Enable BGM 1 = Enabled 0 = Disabled
SYS_CPU_THRESHOLD	901	Controls Processor Fault Threshold	Default:12369 Range:0 to 17361	
DSP_MODEL_NUM	902	Digital Signal Processor DSP Model Number	Default: N/A Range:0 to 65535	Not EtherNet Enabled Filter Model Number 0 = Undef 3 = Sim 101 = HSD 102 = HGL 103 = HGP 104 = HSL 105 = HSE 200 = KIT - BLANK 202 = KIT - HGL 203 = KIT - HGP 205 = KIT - HSE

SYS_SERIAL_NUM_2	903	Upper 16 bits of job number of the unit serial number	Default:0 Range:0 to 65535	Unit serial number section upper 16 bits of 32-bit unit job number Parameter contains UUU in the UUULLLL-NN serial number format.
SYS_SERIAL_NUM_1	904	Lower 16 bits of job number of the unit serial number	Default:0 Range:0 to 65535	Unit serial number section lower 16 bits of 32-bit unit job number Parameter contains LLLL in the UUULLLL-NN serial number format.
SYS_SERIAL_NUM_0	905	Line Number of the unit serial number	Default:0 Range:0 to 65535	Unit serial number section wo-digit unit number Parameter contains NN in the UUULLLL- NN serial number format.
PCB_SERIAL_NUM_1	906	Upper 16 bits of the PCB serial number	Default:0 Range:0 to 65535	PCB serial number section Upper 16 bits of 32-bit unit job number Parameter contains UUUU in the UUUULLLL-NNN serial number format.
PCB_SERIAL_NUM_0	907	Lower 16 bits of the PCB serial number	Default:0 Range:0 to 65535	PCB serial number section Lower 16 bits of 32-bit unit job number Parameter contains LLLL in the UUUULLLL-NNN serial number format.
PCB_TEST_NUM	908	Test Number of the PCB serial number	Default:0 Range:0 to 65535	PCB serial number section three-digit unit number Parameter contains NNN in the UUUULLLL- NNN serial number format.
SYS_POKE_0	950	Diagnostic Poke Variable 0	Default:0 Range: -32768 to 32767	
SYS_POKE_1	951	Diagnostic Poke Variable 1	Default:0 Range: -32768 to 32767	
SYS_POKE_2	952	Diagnostic Poke Variable 2	Default:0 Range: -32768 to 32767	
SYS_POKE_3	953	Diagnostic Poke Variable 3	Default:0 Range: -32768 to 32767	

SYS_PEEK_ADDR_0	954	Diagnostic Peek Address 0	Default:0 Range:0 to 65535	
SYS_PEEK_ADDR_1	955	Diagnostic Peek Address 1	Default:0 Range:0 to 65535	
SYS_PEEK_ADDR_2	956	Diagnostic Peek Address 2	Default:0 Range:0 to 65535	
SYS_PEEK_ADDR_3	957	Diagnostic Peek Address 3	Default:0 Range:0 to 65535	
BGM_STATIC_PASSKEY_A	970	Upper 16 bits of Wireless Password	Default:1 Range:0 to 15	
BGM_STATIC_PASSKEY_B	971	Lower 16 bits of Wireless Password	Default:45575 Range:0 to 65535	
BGM_SECUIRTY_LEVEL	972	Wireless Security Level	Default:0 Range:0 to 1	BGM Security level. High Security mode blocks new pairing requests. Passkey changes each time a connection is attempted. 0 = Low Security 1 = High Security
BGM_NUMERIC_ID	973	Wireless Numeric Identifier	Default:0 Range:0 to 99	User Written Value of BGM Numeric ID
BGM_PAIRING_MODE	974	Wireless Pairing Mode Request	Default:0 Range:0 to 1	0 = No active request 1 = Active request
BGM_COMMAND	975	Wireless Command Input	Default:0 Range:0 to 255	
FIELD_BUS_COMMAND	976	Field Bus Communication Module Command Input	Default:0 Range:0 to 255	
RATED_STEP_1_CAP	980	Unit Rated Capacitance for Tune Step 1	Default:575 Range:0 to 20000	Filter rated (step 1) capacitance Used for tune circuit no load current. 10 = 0.1 uFarad
RATED_STEP_2_CAP	981	Unit Rated Capacitance for Tune Step 2	Default:0 Range:0 to 20000	Filter rated (step 2) capacitance Used for tune circuit no load current. 10 = 0.1 uFarad (Only for filters with dual tuned circuits)
RATED_CAP_CONFIG	982	Unit Rated Capacitance Configuration	Default:0 Range:0 to 1	Filter rated capacitance configuration Used for tune circuit no load current 0 = Delta 1 = Wye

CT_ENABLE	983	Current Transformer CT Feedback Enable	Default:0 Range:0 to 1	Only used for filters with dual tuned circuits 0 = Disabled 1 = Enabled
PF_KVAR_FACTOR_NL	984	Factor Applied to Nameplate kVAR at No Load for kVAR Contactor Control	Default:105 Range:100 to 140	100 = 1.0
PF_KVAR_FACTOR_FL	985	Factor Applied to Nameplate kVAR at Full Load for kVAR Contactor Control	Default:115 Range:100 to 140	100 = 1.0
CONFIG_MODE	986	Feedback Sensing Configuration Mode Selection	Default:1 Range:1 to 3	
CNT_CLOSE_COUNT	987	Count of Times Contactor has Closed	Default:0 Range:0 to 65535	
POWER_CYC_COUNT	988	Running Number of Powers On-Off cycles	Default:0 Range:0 to 255	
HISTORY_LOG_REQUEST	989	Status Detection History Record Request Command	Default:0 Range:0 to 0	
PROC_DATA_CMD_EN	1007	Enables and Disables Implicit Setpoint Writes	Default: 0 Range: 0 to 1	Only used for Passive Filters with EtherNet/IP Connectivity 0 = Implicit IO Writes Disabled 1 = Implicit IO Writes Enabled

Register References

Table 34: Filte	r Status References		
Register B			
Bit	Status Detection		
0	TUNE_PHASE_LOSS_A		
1	TUNE_PHASE_LOSS_B		
2	TUNE_PHASE_LOSS_C		
3	TUNE_BALANCE_LOSS_A		
4	TUNE_BALANCE_LOSS_B		
5	TUNE_BALANCE_LOSS_C		
6	TUNE_UNDERCURRENT_A		
7	TUNE_UNDERCURRENT_B		
8	TUNE_UNDERCURRENT_C		
9	TUNE_OVERCURRENT_A		
10	TUNE_OVERCURRENT_B		
11	TUNE_OVERCURRENT_C		
12	UNDER_TEMP		
13	OVER_TEMP		
14	CPU_ERROR		
15	TUNE_REACTOR_THERMAL_SW		
Register A			
0	RECLOSE_LIMIT		
1	NCP_FAULT_A		
2	NCP_FAULT_B		
3	LINE_REACTOR_THERMAL_SW		

Table 35: Filter Line Status References

16-bit values		
Bit	Status Detection	
0	PHASE_LOSS_A	
1	PHASE_LOSS_B	
2	PHASE_LOSS_C	
3	OVERVOLTAGE_A	
4	OVERVOLTAGE_B	
5	OVERVOLTAGE_C	
6	FILTER_FREQ_MISMATCH	
7	HIGH_VOLTAGE_THD	
8	LINE_PHASE_ROTATION	

16-bit values				
Bit	Status Detection			
0	BALANCE_A			
1	BALANCE_B			
2	BALANCE_C			
3	OVERCURRENT_A			
4	OVERCURRENT_B			
5	OVERCURRENT_C			

Table 36: Filter Load Status References

Waveform Data

The waveform data displayed by the PQconnect is available in the Modbus read analog input register data space. Use function code 4 for reading inputs.

Table 37: Waveform Data

Waveform	Address	Length
Filter Line Voltage Phase A	0	192
Filter Line Voltage Phase B	192	192
Filter Line Voltage Phase C	384	192
Filter Line Current Phase A	576	192
Filter Line Current Phase B	768	192
Filter Line Current Phase C	960	192
Filter Load Voltage Phase A	1152	192
Filter Load Voltage Phase B	1344	192
Filter Load Voltage Phase C	1536	192
Filter Load Current Phase A	1728	192
Filter Load Current Phase B	1920	192
Filter Load Current Phase C	2112	192
Filter Line Voltage Phase A Spectrum	2304	50
Filter Line Voltage Phase B Spectrum	2354	50
Filter Line Voltage Phase C Spectrum	2404	50
Filter Line Current Phase A Spectrum	2454	50
Filter Line Current Phase B Spectrum	2504	50
Filter Line Current Phase C Spectrum	2554	50
Filter Load Voltage Phase A Spectrum	2604	50
Filter Load Voltage Phase B Spectrum	2654	50
Filter Load Voltage Phase C Spectrum	2704	50
Filter Load Current Phase A Spectrum	2754	50
Filter Load Current Phase B Spectrum	2804	50
Filter Load Current Phase C Spectrum	2854	50
Debug Waveform Trace Channel A	4505	192
Debug Waveform Trace Channel B	4697	192
Debug Waveform Trace Channel C	4889	192

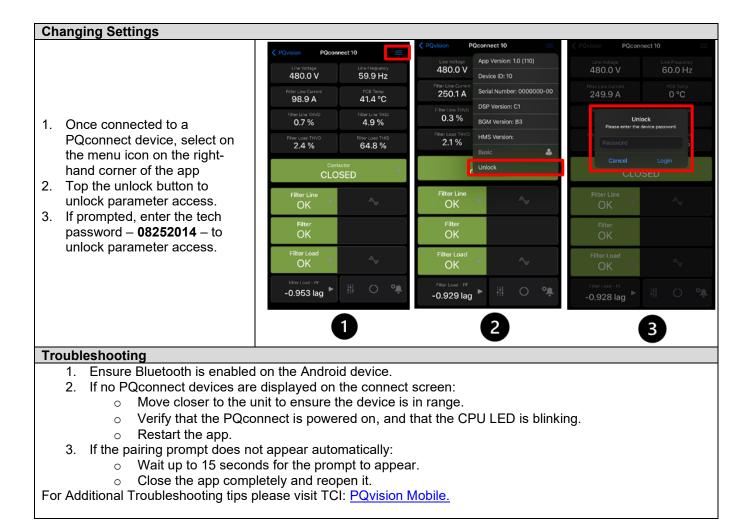
Status Detection History Data

The Status Detection History data displayed by the PQconnect board is available in the Modbus Analog Read Input Register Data space (Function Code of 4) at the following addresses:

History Record Start Address	Length		
2904	16		
2920	16		
2936	16		
4504	16		
	History Record Start Address 2904 2920 2936 		

Table 38 : History Records Modbus Locations

The history record is a circular buffer of 100 records from index 0 to 99. When the history buffer filles up the oldest record is overwritten. The newest entry in the history record is at index 0 and the oldest entry is at index 99. The history records can be fully cleared at any time of the collection processes.


A history record is logged each time parameter *HISTORY_LOG_STATUS* changes. Each history record is a collection of 16 bytes with the following format. An easy to view and read History Log is offered in PQvision Desktop, for more information please read <u>PQvision PC Application</u> <u>Screen Elements – Status Detection History Log.</u>

Bytes	Value	Format
0		Seconds value of timestamp.
1	Timestamp Seconds (4	Timestamp seconds: milliseconds
2	bytes)	value is the time since power on
3		of the event.
4	Timestamp Power Cycle Count	Range 0 to 255. Indicates the number of times the PQconnect board has been reset/power cycled.
5	Timestamp Milliseconds	Milliseconds value of timestamp. Shown in units of 10s of milliseconds.
6		Filter Status Detection that are active
7	Filter Status A	in Register A
8	Filter Status B	Filter Status Detection that are active
9		in Register B
10	Filter Line Status	Filter Line Status Detection register
11		that displays current faults.
12	Filter Load Status	Filter Load Status Detection register
13		that displays current faults.
14	16 Bit, Two's Compliment	History Record Checksum.
16	Checksum	When this 16-bit value is added together with the rest of the history records as 16-bit values the result should be zero if no data errors exist in the packet.

Table 39 : History Fields

Bluetooth Wireless Technology PQconnect offers Bluetooth wireless technology which is usable for PQvision App for Android & Apple devices. With the PQvision mobile app, monitoring and controlling your passive filter has never been easier. For setup instructions and tutorials on the mobile app visit: PQvision Mobile or follow the instructions below.

System Requirements:Android OS 10.0 or higherIOS 17.0 or higherBluetooth 4.2			
Pairing Instructions			
1. Once PQvision is installed from Google Play store/App store, open the	11:03		
PQvision mobile app and allow PQconnect to use Bluetooth. Any Bluetooth capable PQconnect devices in range will be automatically displayed on the connection screen.	PQvision MY PQCONNECT OTHER PQCONNECT		
 Select the PQconnect device by tapping on the > icon. Each PQconnect 	PQconnect 10	>	
device in the app will be identified by their Device ID.	PQconnect 11	>	
 3. A prompt to enter the Bluetooth pairing passkey will pop up automatically. Enter the "111111" 	PQconnect 12	>	
	PQvision PQconnect 10 Ine Voltage Line Frequency		
	480.0 V 59.9 Hz Filter Line Current PCB Temp 98.9 A 41.4 °C		
	Filter Line THVD Filter Line THID 0.7 % 4.9 %		
4. Once the passkey is	2.4 % 64.8 %		
successfully entered, all filter data will be	CLOSED		
presented.	Filter Line OK		
	Filter OK		
	Filter Load OK		
	Filter Load - PF -0.953 lag ►		

EtherNet/IP

The PQconnect EtherNet/IP network communication interface transmits and receives command and status data from the PQconnect Modbus master over an ethernet link. EtherNet/IP was developed in the late 1990s and released in early 2000, which is one of serval network protocols that operates under the common industrial protocol (CIP), an open application layer protocol. EtherNet/IP should not be confused with Ethernet as they work in different ways.

Some benefits of EtherNet/IP include compatibility with Common protocols and transport devices using traditional EtherNet. Certified standardization by ODVA, and endless tools and training

The EtherNet/IP version of the PQconnect board is capable of Implicit I/O data communication with a PLC, HMI, SCADA, or other EtherNet/IP scanner device. TCI LLC, An Allied Motion Company is an ODVA licensed vendor (Vendor ID 1583). See our <u>EtherNet/IP EDS File and</u> <u>Conformance Info</u> on the HarmonicGuard/HarmonicShield Product page on our website for information about our Declaration of Conformity and EDS File.

The EtherNet/IP communication interface is provided on the HGP to allow the unit to be configured and data collected from the unit. The EtherNet interface is capable of dual 10/100 Mbps and uses IP Protocol. The EtherNet/IP communications interface is implemented using a third party, industry leading embedded module EtherNet/IP solution from HMS (B40 Module). See the Table below for a full feature list of the EtherNet/IP communication interface.

Feature	Description
Profile Support	EtherNet/IP Generic Device (keyable), Address Conflict Detection (ACD),
Connection	Dual 10/100 Mbit twisted pair RJ45 Connection
Galvanic Isolation	Transformer Isolated Ethernet Interface
TCP/IP Settings	Web Browser Based Configuration or HMS IP config utility network scan and configuration tool
Baud Rate	10/100 Mbps Auto Detect
Protocol Conformance	ODVA CONFORMANT (ODVA file number 12256.01, ODVA vendor ID 1583).

Table 40: EtherNet/IP communication interface

Wiring for EtherNet/IP communication

The dual PQconnect board ethernet RJ45 connectors are located at J16 on the PQconnect board. See <u>Figure 16: PQconnect Connections</u> as a reference. It is highly recommended to use an ethernet Cat 5/6 cable for the connection to the PQconnect board and the target device. Connect one end of an ethernet patch cable to the ethernet port on the PQconnect board, and the other end either to a switch connected to your network or device.

Note: You can also connect to the ethernet port on the PQconnect directly to a computer or laptop.

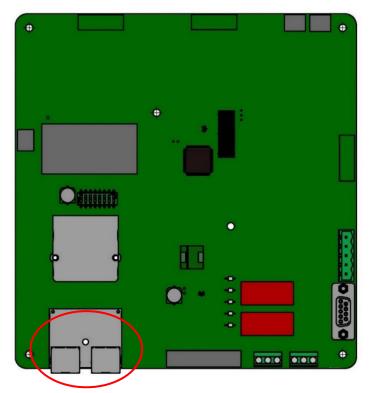


Figure 40: PQconnect Ethernet Connection Headers (Circled in Red)

	Pin Number	Description
	1	TD+
	2	TD-
	3	RD+
	6	RD-
1 8	4, 5, 7, 8	Termination

Table 41: Ethernet Connection Pin Out

IP Address Configuration for EtherNet/IP communication

To use EtherNet/IP with a PLC/HMI/SCADA device, the PQconnect EtherNet/IP module with a different IP address than **192.168.1.35**. Which may be needed if the device is being connected has a different subnet mask of your network/internet. See the table below for the default settings.

Setting	Default Value
IP Address	192.168.1.35
Gateway	0.0.0.0
Subnet	255.255.255.0
DHCP	Disabled

The steps below explain how to switch to a different IP address for your network. Please note that these steps assume that the PQconnect board and unit is energized but may or may not be enabled for correcting harmonics.

- 1. Connect a Cat-5 or higher ethernet cable to the EtherNet/IP module on the PQconnect board. These should be 2 ethernet ports next to each other, connected to either one. Connect this ethernet cable to your computer.
- Open <u>HMS IP Configuration Tool</u> which is an IP configuration Windows tool for TCP/IP settings in HMS devices. IPconfig will detect all compatible and active HMS devices on the local network and do not have to be on the same EtherNet/IP subnet as the computer is running IPconfig.
 - a. When IPconfig is started it will automatically scan for any compatible and active HMS devices. Click on the one Flag Icon of the application to blink the EtherNet/IP Module LEDs lights.

HMS IPconfig							×
G							ţ
Туре	IP	DHCP	Version	MAC	Comment		
TCI PQconnect (TM)	192.168.1.35	Disabled	1.11	00-30-11-24-09-AD		0	T

Figure 41: Flag Icon Highlight

- b. To change the IP configuration for a device, click on the device in the list. A device configuration subpage should appear to allow you to edit your IP and DNS configuration. After editing the configuration, click on apply the new setting and reboot the device.
- 3. It is also possible to set the IP address and configure other networks in the EtherNet/IP module using its bult in web server via an internet browser window.
 - a. First the IP address of the PQconnect board and type the IP address into the browser search bar. A window like the following picture will open.

🛞 A	Anybus CompactCom	× +			~	-		×
\leftarrow	-> C 🔺 No	ot secure 192.168.1.35		6 \$	=1		Update	:)
	🛞 Anyl	bus	Carlin Carl	Anybus Com	pactC	om		*
	MODULE	IP Configuration						
	Overview	DHCP	Disabled 🗸					
	Parameters	IP Address	192.168.1.35					
	NETWORK	Subnet Mask	255.255.255.0					
	Status	Gateway Address	192.168.1.254					
	Configuration	Host Name	ODVA-Host-Name3					
	SERVICES	Domain name						
	SMTP	DNS Server #1 DNS Server #2	0.0.0.0					
		Save settings Ethernet Configuration	,					
		Port 1	Auto 🗸					
		Port 2	Auto 🗸					
		Save settings						
	© 2013 HMS Indust	rial Networks - All rights reserved			Connecting	Devices™		-

Figure 42: HMS IP Config EtherNet/IP Configuration Tool

- b. Click on Status under NETWORK to see more detailed network information. Click on Configuration under NETWORK to set a static IP address.
- c. Modify the IP configuration and click the Save Settings button once finished.

Viewing EtherNet/IP Data on a Website

The PQConnect board with EtherNet/IP option has the capability to be viewed by using a website. This eliminates the need for a PLC/HMI to access the same data that can be accessed via EtherNet/IP.

Follow these steps for viewing data on a website."

- 1. Connect your PQconnect board to the ethernet network via an ethernet cable. To change your PQconnect board IP address refer to IP Address Configuration for EtherNet/IP communication section of the manual.
- 2. Find the PQconnect IP address of the Anybus CompactCom B40 by using Anybus HMS IP config utility application.
- 3. Open a web browser and go ahead and search for the PQconnect IP address. You should see something like the figure below.
- 4. To view the PQconnect parameters Click on the Parameters tab on the left-hand side of the website for real-time data of the PQconnect board. For more information refer to section <u>EtherNet/IP Register Map</u> in the manual

🛞 Anyt	nus		Anybus CompactCom
MODULE	Identification		
Overview	Module name:	TCI PQconnect (TM)	
Parameters	Serial number:	0664458D	
NETWORK	FW version:	1.11	
Status	Uptime:	0 days, 5h:13m:6s	
Configuration	CPU Load:	1%	
SERVICES			
SMTP			
SWITE			

Figure 43: PQconnect IP Address

Using PQConnect Board with RSLogix 5000 VIA EtherNet/IP

This example will go through setting up RSLogix 5000 to enable a generic PLC to communicate with the PQConnect board via EtherNet/IP. This is a generic example which should be used as a guide when setting up your system. Any additional information or further questions, please see the RSLogix 5000 user manual or contact the manufacturer.

Required Material

- EtherNet/IP Enabled PQconnect board connected to EtherNet/IP network.
- RSLogix 5000 on a PC or laptop
- EtherNet/IP capable PLC or HMI
- PQconnect EDS file with Add-On Profile

Note: Make sure that the PQconnect board ethernet port is connected to your network along with the PLC or HMI device of your choice.

Option 1: Installing PQconnect EDS File in RSLogix 5000

- 1. Download the PQconnect EDS file with Add-on Profile EtherNet/IP EDS File
- 2. Open the RSlinx "EDS Hardware Installation Tool" typically found in the Windows start menu of your studio 5000 installation. A window like the figure below should appear.

	Rockwell Automation - Hardware Installation Tool 34.0.17.0			
This tool allows you to change the hardware description information currently installed on your computer.				
Add	Launch the EDS Wizard and add selected hardware description files only.			
Remove	Remove Launch the EDS Wizard and remove selected hardware description files only.			
	Exit			

Figure 44: EDS Hardware Installation Tool

3. Click on **Add**. A window will open where you can browse to the EDS file that you downloaded then select the option to "**Register a Single file**". As shown in the figure below.

lockwell Automation's EDS Wizard Registration Electronic Data Sheet file(s) will be added to your system for use in	n Rockwell Automation applications.
Register a single file Register a directory of EDS files Look in subfolde	15
Named: \PQConnectUtilitiesUnitTest\FunctionalTesting\062F002B00370100.	eds Browse
• If there is an icon file (ico) with the same name as the file(s) then this image will be associated with the device.	you are registering
	To perform an installation test on the file(s), click Next
	Next > Cancel

Figure 45: EDS File Registration

- 4. After selecting the file, click on the Next button and then Next on the next window.
- 5. A new Window should pop up with the title "Change Graphic Image" as shown in the figure below with the TCI, LLC logo. Leave the icon at its default and click on the Next button.

Rockwell Automation's E	DS Wizard		\times
Change Graphic Ima You can change the	ge graphic image that is associated with a device.		Q/
Change icon	duct Types Uendor Specific Type TCI PQconnect (TM)		
	< Back	Next >	Cancel

Figure 46: Change Graphic Image Screen

6. Afterwards you should get a new window saying, "Would you like to register the following

device" and then the word TCI PQconnect (TM) below that message. Click Next and the PQconnect board will be registered in Studio 5000.

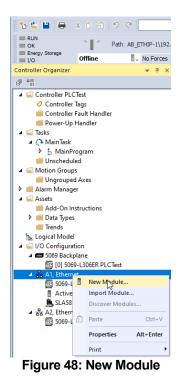

Rockwell Automation's EDS Wizard			\times
Final Task Summary This is a review of the task you want to complete.			4
You would like to register the following device. TCI PQconnect (TM)			
	< Back	Next >	Cancel

Figure 47: Final Task Summary Screen

7. Click Finish to exit out of the Rockwell Automation EDS Wizard. Then click Exit to exit the EDS Installation Tool.

Adding Harmonic Filter Device in RSLogix 5000 (EDS-Version)

- 1. Open Studio 5000 and create a new project or open your existing project. Choose your PLC and the number of Expansion I/O modules your PLC has.
- 2. In the Studio 5000 Controller Organizer window you will see I/O configuration and EtherNet/IP with the name of your PLC and project name underneath. Right click on the ethernet icon and select New Module, like the image below.

3. In the Search bar of the Select Module Type, enter "TCI" or "PQconnect" and the PQconnect board in the EtherNet/IP Module Catalog should appear, see figure below.

PQc	onnect	Cle	ear	Tilters	Hide Filters	*
	Module Type Category Filters 20 - Comm-ER Analog CIP Motion Safety Track Section		^	Module Type Vendor Filters Advanced Energy Industries, Inc. Bray International, Inc Brooks Instrument		^
<	Communication	>	*	Buerkert Fluid Control Systems <	2	
	alog Number Description Vendor TCIPQconnect TCI PQconnect TCI, LLC - An			egory neric Device		

Figure 49: PQconnect Board in Module

- 4. Select the PQconnect device so that it's highlighted in blue and click on create.
- 5. A new window like the figure below should appear after the module has been created.

0		ß		
General* — Connection — Module Info — Parameters — Internet Protocol — Port Configuration — Network	General Type: Vendor: Parent: Name: Description: Module Defin Revision:	1.011	Ethemet Address Private Network: IP Address: Host Name:	192.168.1. 35 -
atus: Creating	Electronic K		OK	Cancel

Figure 50: Module Created Screen

- 6. Enter the name "PQconnect" for the name of the module and enter the IP Address of the PQconnect device that was configured. Optional configurations are possible with the module for the user. Once Done click Ok.
- 7. The PQconnect device should appear underneath the ethernet section of the Controller Organizer location in the left-hand side of RSLogix 5000, as shown in the figure below.

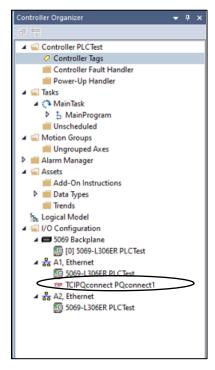


Figure 51: Controller Organizer Location with PQconnect

Viewing Rockwell's Licensed EDS AOP and Controller Tags

- 1. To view PQconnect device EDS Generated Add on profile located the device in Controller Organizer and double clock on the device.
- 2. The module properties window should pop-up such as the figure below.

General	General	
Connection Module Info Parameters Internet Protocol Pert Configuration Network	Type: TCIPGconnect TCI PGconnect (TM) Verdor: TCI, LLC - An Alled Motion Company Parent: Local Name: Company Description:	Ethernet Address 00 Private Network: 192.163.1. 35] 0 O IP Address:
	Module Definition Revision: 1.011 Biectronic Keying: Compatible Module Connections: Exclusive owner	Olarge
: Offine		OK Carcel Apply Help

Figure 52: Module Properties Window

3. To view the Parameters of the PQconnect device, locate the Parameters sub section on the left-hand side of the screen and click on that section. The parameter section should be displayed allowing the user access to all the EtherNet/IP enabled parameters name, value, units, and description.

General	Paramete	ers					
Connection							_
Module Info Parameters	Group:	<all parameters=""></all>]				
- Internet Protocol Port Configuration	D A	Name	Value	Units	Style	Description	^
Network	1	ParamCmd		1		Parameter save/load command	
	2	WaveformTrigCmd				Waveform capture trigger command	
	3	ResetCmd				Contactor reset command	
	4	ParamKeyA				Parameter access key value A	
	5	ParamKeyB				Parameter access key value B	
	6	CTRatio		Amps		Current Transformer CT ratio primary Amps relati	
	7	WaveformFormat		10=1.0A or per unit with ba		Waveform data format	
	8	ControlMode				Contactor control mode	
	9	AutoCloseEn				Enable contactor auto reclose	
	10	RatedCurrent		10 = 1.0 Amps		Unit rated current	
	11	RatedVoltage		10 = 1.0 Volts		Unit rated voltage	
	12	RatedFreq		Hz		Unit rated utility grid frequency	
	13	TestVoltage		10 = 1.0 Volts		Unit test voltage	
	14	TestFreq		Hz		Unit test frequency	
	15	FilterStatusRelayAEn				Filter status A relay action enable bit mask	Υ
	<	actory Defaults				Set •	
Status: Offline	i) The mod	values displayed here are ule when a connection is	read dire establish	ed. Click Set to write updated v	ues are alues to OK	not stored in the controller and are not sent to the the module. Cancel Apply Help	

Figure 53: Parametetr Sub Section Screen

4. Parameters can also be viewed based on group selection. An example of the THD group being selected and viewed is shown below.

Parameters	Group):	THID ~				
 Internet Protocol Port Configuration 		۵d	Name	Value	Units	Style	Description
Network	1	16	ITHDScalar				Current THD gain adjustment factor
	2	28	LineATHD		10 = 1.0%		Line current phase A THD
	2	29	LineBTHD		10 = 1.0%		Line current phase B THD
	2	230	LineCTHD		10 = 1.0%		Line current phase C THD
	2	243	LoadATHD		10 = 1.0%		Load current phase A THD
	2	244	ILoadBTHD		10 = 1.0%		Load current phase B THD
	2	245	ILoadCTHD		10 = 1.0%		Load current phase C THD
	2	55	ITuneATHD		10 = 1.0%		Tuned circuit current phase A THD
		256	ITuneBTHD		10 = 1.0%		Tuned circuit current phase B THD
	2	57	ITuneCTHD		10 = 1.0%		Tuned circuit current phase C THD
	J.	The			ctly from the module. These value d. Click Set to write updated val		Set +

Figure 54: THD Group Selection Screen

- Other Tabs such as the Module Info will activate once the PLC is running. Go to Communications, Who Active. Select AB_ETHIP-1 and select the PLC. Click Go Online and download the offline project to the PLC.
- 6. The PLC should be communication with the PQconnect device and reading parameter data. To view the status data of the device, right click on Controller Tags and click on Monitor Tags. A figure should appear like the figure below showing the PQconnect Consuming and Producing Data.

ontroller Organizer 👻 👎 🗙	Module Properties: Local (TCIPQconne	tt 1.011) Controller Tags - PLCTes	t(controller) ×		
9 9	Scope: PLCTest - Show:	All Tags			 Enter Name Filter
Controller PLCTest	Name	== Value	 Force Mask 	 Style 	Data Type
Controller Tags Controller Fault Handler	PowerOn		0	Decimal	DINT
Power-Up Handler	PowerOnTimer		{}	{}	TIMER
🖌 📹 Tasks	PQconnect1:l		{}	{}	062F:TCIPQconnect E9238A24:I:0
🔺 🜔 MainTask	POconnect1:0		{}	{}	.062F:TCIPQconnect_DC4B508A:0:0
MainProgram					
🛑 Unscheduled 4 🖼 Motion Groups	▶ Timer1		{}	{}	TIMER
Ungrouped Axes	Timer2		{}	{}	TIMER
Frends Logical Model ✓//C Configuration S009 Backglane [0] 5069-1306ER PLCTest					

Figure 55: PQconnect Consuming and Producing Data

Unhide the Tags for "**PQconnect:** I" to view the Process Data running. The PQconnect board should be communicating data back and forth such as the line voltages and current. The figure below displays a PQconnect device being run in data simulation mode with Process data running.

As shown, each data location has a corresponding name which matches the EtherNet/IP Register Map Parameters of this manual. Each location also has its predefined datatype with a range specified in its software.

For example, the producing data instance "VLineABRMS" correlates to the Parameter instance **V_LINE_AB_RMS** in PQVision with an I/O Register in PQVision of 30. For more information on V_LINE_AB_RMS parameter refer to the <u>Voltage Register Map</u>.

pe: PLCTest V Show: All Tags				V Enter Name Filter
Name	📰 🔺 Value	 Force Mas 	k 🗢 Style	Data Type
▶ PowerOn		0	Decimal	DINT
▶ PowerOnTimer		{}	{ }	TIMER
PQconnect1:l		{}	{ }	_062F: TCIPQconnect_E9238A24:I:0
PQconnect1:I.ConnectionFaulted		0	Decimal	BOOL
PQconnect1:I.GridVoltage		4800	Decimal	INT
PQconnect1:I.GridFrequency		600	Decimal	INT
PQconnect1:I.GridRotation		1	Decimal	INT
PQconnect1:I.GridSyncLocked		1	Decimal	INT
PQconnect1:I.VLineABRMS		4800	Decimal	INT
PQconnect1:I.VLineBCRMS		4801	Decimal	INT
PQconnect1:I.VLineCARMS		4800	Decimal	INT
PQconnect1:I.VLineABTHD		1	Decimal	INT
PQconnect1:I.VLineBCTHD		1	Decimal	INT
PQconnect1:I.VLineCATHD		1	Decimal	INT
PQconnect1:I.ILineARMS		2500	Decimal	INT
▶ PQconnect1:I.ILineBRMS		2500	Decimal	INT
PQconnect1:I.ILIneCRMS		2.500	Decimal	INT
PQconnect1:I.ILineATHD		9	Decimal	INT
▶ PQconnect1:I.ILineBTHD		9	Decimal	INT
POconnect1:I.ILineCTHD		9	Decimal	INT

Figure 56: PQconnect in Data Simulation Mode

Option 2: Installing PQconnect AOP in RSLogix 5000

This section covers on how to install the Add-On Profile (AOP) for Harmonic Filter with PQconnect running firmware version *C3 and greater*. The AOP is used to simplify the integration between your harmonic filter with PQconnect and RSLogix 5000, by allowing the RSLogix 5000 software to know which type of module is being used and its custom settings.

- 1. Close any instances of RSLogix 500 and download the Add-On Profile (AOP) installer from PQconnect main page: PQconnect AOP.
- 2. Extract the installation files and double-click the **MPSetup.exe** file to launch the RSLogix 5000 Module Profile Setup.
- 3. Click Next several times, accepting the default selections in most cases.

🕼 RSLogix 5000 Module Profiles Setup	_	- 0	×	
Welcome to the RSLogix 5000 Module Profiles Setup Wizard.				
The RSLogix 5000 Module Profiles Setup Wizard provides for the installation of these groups of RSLogix 5000 Module Profiles.				
TCI PQconnect EtherNet/IP Module Profile 1.01.08 Logix Designer Motion Database 36.12.7040 Rockwell Automation Catalog Services 2.07.7040				
	D	etails		
< Back Next >		C	ancel	

Figure 57: PQconnect Add-On Profile Installation

4. Click **Finish**. You may have to open a new instance of RSLogix 5000 for the AOP to take effect.

Figure 58: PQconnect Add-On Profile Setup Complete

Adding Harmonic Filter Device in RSLogix 5000 (AOP-Version)

- 1. Open Studio 5000 and create a new project or open your existing project. Choose your PLC and the number of Expansion I/O modules your PLC has.
- 2. In the Studio 5000 Controller Organizer window you will see I/O configuration and EtherNet/IP with the name of your PLC and project name underneath. Right click on the ethernet icon and select New Module, like the image below.

Figure 59: New Module

3. In the Search bar of the Select Module Type, enter "TCI" or "PQconnect" and the PQconnect board in the EtherNet/IP Module Catalog should appear, see figure below.

Qconnect	C	lear Filters			Hide Filters	*
Module Type Category 20 - Comm-ER Analog CIP Motion Safety Trac Communication Communications			Q Roc Q Roc Q SM Q TCI	dule Type Vendor Filters kwell Automation/Relance Electri kwell Automation/Sprecher+Schu Corporation , LLC - An Allied Motion Company ra Technologies		
Catalog Number TCIPQconnect	Description Harmonic Filter		Vendor TCI, LLC - An Allied Moti	Catego on Company Specia		

Figure 60: PQconnect Board in Module

- 4. Select the PQconnect device so that it's highlighted in blue and click on the *Create* button.
- 5. A new window should appear asking the user to define their new device. Enter the name and description of the module that best fits your need and enter the IP Address of the PQconnect device. Optional configurations are possible with the module for the user.

💽 New Module		×
TCIPQconnect, Parent: Local IP address:		
Controller connection: Creating INFORMATION Device Information Vendor Information CONFIGURATION Connection Internet Protocol Port Configuration Summary Parameter List Access Level Configuration Confactor Configuration Alerts Management Modbus Configuration Bluetooth Configuration	Device definition × Device type: Revision: TCIPQconnect Harmonic Filter 1 Name:* 1 Type_your_Name_Here Electronic keying: Description:* Compatible Module Type your Description Here Connection: Ethernet Address:* 192 . 168 . 1 . 35 Revision 192 . 168 . 1 . 35 OK Cancel Electorier OK Consetive Dwner OK	Not Connected
		OK Cancel Help

Figure 61: New Module

- 6. Once configured click **Ok**. The recently configured module will be available to the user. Note that most of its configuration pages are not available unless the device is connected or online. *Review the Vendor Page for any Support help that may be required when configuring your device*.
- 7. Afterwards click **Ok** to exit.
- 8. The PQconnect device should appear underneath the ethernet section of the Controller Organizer location in the left-hand side of RSLogix 5000, as shown in the figure below.

Note: For more information or help on the configuration process the AOP select the Help button on the AOP.

Add-On Profile Summary Page

The Summary page of the AOP gives real-time update of connected harmonic filter status and key parameters such as voltages and currents. This section gives a brief broken of key parameters.

General:

- Software Version: Latest Filter's PQconnect software revision
- Filter Model: Production type of Harmonic Passive Filter.
- Serial Number: Filter's Serial Number found in the product's nameplate.
- PCB Number: Filter's PQconnect PCB Number, set by Factory.
- Rated Current: Current Rating of the Filter.
- Rated Voltage: Voltage Rating of the Filter.
- Rated Frequency: Frequency Rating of the Filter.
- Line Voltage: Utility Voltage in RMS being measured.
- Line Frequency: Utility Frequency in Hz being measured.
- Line Rotation: Order in which the voltage waveforms of a polyphase AC source reach their respective peaks. Can be "ABC" or "ACB."
- Board Temperature: Filter's PQconnect board temperature.

Filter Line/Load:

- VRMS: Filter's alternating current (AC) Root Mean Square voltage.
- **THVD:** Displays the Total Harmonic Distortion of the utility line/load voltage as a percentage.
- IRMS: Filter's alternating current (AC) Root Mean Square current
- **THID:** Displays the Total Harmonic Distortion of the utility line/load current as a percentage.

Note: Line/Load power values are calculated using fundamental values.

Status Detection:

Filter's Status Alerts for the input, output and of the filter will display according to severity of the alerts. For more information about each alert/fault review the <u>Add-On Profile Alert</u> Management Page.

TCIPQconnect, PQconnect Parent: Local IP address: 192.168.1.35													
Controller connection: Running													
INFORMATION Overview Device Information Vendor Information CONFIGURATION Connection Internet Protocol	Sumr Genera Software Filter Mor Serial Nu PCB Num	al Version: del: mber:	C3 Sim 655616-2 952309-0	-		Rated Cu Rated Vo Rated Fre	ltage:	302.0 480.0 60.0	Amps Volts Hz		Line Voltage: Line Frequency: Line Rotation: Board Temp:	480.0 60.0 ABC 0.0	Volts Hz deaC
Port Configuration Summary Parameter List Access Level Configuration	Filter L		B	с		Filter L	.oad	в	с		Filter Load P		ucyc
Contactor Configuration Alerts Management Modbus Configuration Bluetooth Configuration	VRMS: THVD: IRMS: THID:	480.1 0.3 302.8 1.4	480.0 0.5 302.6 1.4	480.1 0.2 303.1 1.9	Volts 96 Amps 96	VRMS: THVD: IRMS: THID:	490.0 2.1 322.6 36.8	490.1 2.0 322.5 36.8	490.0 2.1 322.7 36.9	Volts % Amps %	Apparent: Real: Reactive: Power Factor:	258.0 1.0 3.0 -0.930	kVA kW kVAR lag
	Filter S					Line St Statu:					Load Status ⊘ Status OK		

Figure 62:Harmonic Filter AOP Summary Page

Add-On Profile Changing Access Levels

This section focuses on setting the Access Level of the Filter. The Add-On Profile contains several screens that allow the user to monitor and control the status of the Passive filter. Tech Access or Higher is required to view additional screens. This will require the user to have their project running.

- 1. With Studio 5000 opened and your project being verified to have no errors. Run the Ladder Logic in programming or production mode.
- 2. After going online double click on your Harmonic Filter device in the *Controller Organizer* in Studio 5000.
- 3. Select on the Access Level Configuration Page.
- 4. Change the Access Level section to Tech access and under the Password textbox. Enter **08252014** to enable tech access.
- 5. Select Log In after a moment the current access level should change to tech access.

Note: If the Harmonic Passive Filter is connected via Bluetooth, the filter access configuration settings will return to the Basic/User access level. The mobile app access level will be the highest priority if connected, and the access level must be changed via the mobile app.

TCIPQconnect, PC Parent: Local IP address: 192.168.1.35	Qconnect				
Controller connection: Running	Device status: OK			(Connected
INFORMATION Overview Device Information Vendor Information CONFIGURATION Connection Internet Protocol Port Configuration Summary Parameter List	Access Level Configuration Current Access Tech Access Select Access Level: Tech Access				
Access Level Configuration Contactor Configuration Alerts Management Modbus Configuration Bluetooth Configuration					
		ок	Apply	Cancel	Help

Figure 63: AOP Successful Access Level Configuration Example

Add-On Profile Parameter List Page

This section focuses on viewing and editing feedback and setpoints that are reported by the Filter's PQconnect device. The window features three primary parameter statuses: Parameter, Contactor, and System Status. Select an option through the Parameter Group Filter combo box. All parameters get updated once when entering the Parameter Group and can be refreshed anytime by clicking the "**Refresh**" button.

Parameter Structure:

- Instance ID: Each parameter has an unchangeable, unique EtherNet/IP Instance ID.
- Name: Parameter Name. EtherNet/IP Parameter name is different from the Modbus Name.
- Value: This is the value the parameter is currently being read or set to.
- Units: Unit value of parameter. It can be a percentage (%), A/10, V/10, or Celsius.
- **Default:** Default value for the parameter from the Filter's PQconnect Device.
- Min: The parameter's Minimum value can be set via the Parameter List Table.
- Max: The parameter's Maximum value can be set via the Parameter List Table.
- **Description:** Describes the overall use of the EtherNet/IP Parameter Instance.

Note: Viewable parameters that are shown are based on the Users access level. If the parameter, you are looking for cannot be found you may require a higher access level.

Reading A Parameters:

All parameters available in the parameter list groups are readable. Parameters are only readable and not settable are called as Feedback parameters. All parameters are refreshed by clicking the "Refresh" button.

Setting/Editing A Parameters:

All parameters available in the parameter list groups are readable but not settable. Parameters are readable and settable/editable are called as Setpoint parameters. Parameters that can be written to will have the "*Edit*" columns enabled if the proper access level has been provided. Parameters are only allowed to be modified. By selecting the "*Edit*" button, the user can go ahead and write a new value to the parameter that exists within its min and max values. After editing a parameter, the "**Set**" arrow icon will be enabled. The user can then write the request value to the Filter after being set to.

Parameter List Parameter Status: PARAM INIT FINISH System Status: Auto Load Close Contactor Status: Force Close Condition Parameter Group Filter Control C \square Edit Set ID Name Value Units Default Min Max Description -277 InitCmpl 0 Controls start up init and calibration che 4 278 CapWrn 0 Filter capacitor degredation warning Data Sim Mode Data simulation mode active 4 291 DSMode -ConfigModeActive ABC 292 Active feedback sensing configuration m 4 297 PCBCalTimer 90 ms Factory PCB calibration timer value 4 1 ParamCmd SetTechAccess Idle Parameter save/load command WaveformTrigCmd NoTria -2 NoTria Waveform capture trigger command -3 ResetCmd NoRst NoRst Contactor reset command

Figure 64: Editing Parameter ParamCmd

Edit Parameter		
Parameter: 1	ParamCmd	
Parameter save/	load command	
Default	Idle	
Value SetTechAccess	•	

OK Cancel

Figure 65: Edit Parameter Screen For ParamCmd

me	eter Statu	s: PARAM	/_INIT_F	INISH	System Status: Auto Lo	ad Close			Contactor St	atus: Force Close Condition
	eter Grou	p Filter	•							
			-							
		Ô				С				
Set)isc				Refre				Save Load
	Edit	Set	ID	Name	Value	Units	Default	Min	Max	Description
1		-	277	InitCmpl	0					Controls start up init and calibration of
1		-	278	CapWrn	0					Filter capacitor degredation warning
		-	291	DSMode	Data Sim Mode					Data simulation mode active
		-	292	ConfigModeActive	ABC					Active feedback sensing configuration
		-	297	PCBCalTimer	90	ms				Factory PCB calibration timer value
		-	1	ParamCmd	SetTechAccess		Idle			Parameter save/load command
		-	2	WaveformTrigCmd	NoTrig		NoTrig			Waveform capture trigger command
		4	3	ResetCmd	NoRst		NoRst			Contactor reset command

Figure 66: Setting Parameter ParamCmd After Editing

Saving & Loading Parameter List:

Parameter List

Press the **"Save**" button to save the Filter's Parameter List. Upon clicking this, a file dialog browser will appear, prompting the user to select a file location for the .csv file to be saved. The parameter list will then be saved as a .csv spreadsheet. Technicians can also load a stored file's parameters to the Filters from the AOP or from PQvision version 1.7.0 or higher. This feature is useful when a user corrupts the Filter's parameter table and saves its settings afterward.

Add-On Profile Contactor Configuration Page

The Contactor Configuration page provides a way to configure the internal Contactor of the passive filter. The Contactor is an electronically controlled switch that disengages and engages the harmonic filter's tuning circuit, designed to eliminate most harmonic frequencies. The overall sequence in which the filter goes through is described below:

- 1. The Contactor Mode Setting dictates the contactor state if there are no Alerts.
- 2. The Contactor Mode Setting generates a command to change the Contactor State.
- 3. When the command to change the contactor state occurs, the filter waits for the Open Delay or Close Delay time to pass.
 - i. And if the Contactor is commanded to Open, the Open Delay time has passed, and the Contactor opens.
 - ii. Or if the Contactor is commanded Closed, the Close Delay time has passed, the filter ensures the Contactor reclose timer has passed, and then the Contactor Closes.

Note: Make sure to save your filter's settings to make your contactor changes final.

TCIPQconnect, PQconnect Parent: Local IP address: 192.168.1.35					
Controller connection: Running	Device status: OK				
INFORMATION Overview Device Information Vendor Information CONFIGURATION Connection Internet Protocol	Contactor Status Contactor Mode: Contactor State:	ick Save Settings to commit the changes in the PQc Qconnect is power cycled. Contactor Reset Reset Contactor	Open and Close Delay Open Delay:		
Port Configuration Summary Parameter List Access Level Configuration Contactor Configuration	Auto Load Closed Re-Close Time Remaining: 60 sec	Auto Reset: Disabled Enable Disable	(1 - 3600) Close Delay: 5 sec • • (1 - 3600)		
Alerts Management Modbus Configuration Bluetooth Configuration	Select Contactor Mode Contactor Mode: Auto Load	Auto Load Mode Close at: (10 - 100) Hysteresis: 5 % ★ ▼ (2 - 50)			
	Save Settings Reset PQconnect				

Figure 67: Harmonic Filter AOP Contactor Configuration Page

Contactor Reclose Timer:

The Contactor must always wait <u>**2** minutes</u> before reclosing after opening. This safety feature ensures the user does not open and close the contactor for short durations.

Open & Close Delay:

For the various contactor control modes, there is a customer-settable time delay for the contactor to open and close. A condition that would change the state of the contactor must last longer than the set delay for it to have an effect. This is important to prevent high frequency switching of the contactor, which reduces its longevity. This delay time can range from 1 to 3600 seconds for both Open and Close delay times.

Contactor Reset:

This manually resets the contactor state and resumes normal operations. It should be selected after an Alert (alarm/fault) condition has occurred and been cleared. This is useful when the auto-reset functionality has been turned off.

Auto Reset Enabled/Disabled:

If enabled, the contactor will automatically reset <u>5 minutes</u> after an <u>alert condition has been</u> <u>cleared</u>.

Contactor Control Mode Selections:

- Force Open Forces the Contactor to open permanently after Open Delay time.
- Force Close Forces the Contactor to close permanently after Close Delay time.
- Auto Load- Automatic contactor mode. It will force the contactor to close when the filter load percentage reaches the Auto Mode Close Threshold. Likewise, if the measured percentage of the load is less than its selected close threshold value, the contactor will automatically open. The load hysteresis threshold can be used to decide at what load percentage the contactor recloses. For example, with a Close Threshold of 30% and Load Hysteresis of 5%, the contactor will close when the filter loading exceeds 30% load, but the contactor will not open until the loading falls below 25% load.
- **Relay** Forces the Contactor to open or close based on a signal from Relay Pin J7/J8 on the PQconnect board. For example, if the close threshold of the contactor is 30% and the load hysteresis threshold is at 5%. The contactor will close when the filter loading exceeds 30% load, but the contactor will not reopen itself until the loading falls below 25% load.
- Auto kVAR– Automatic contactor mode. It will force the contactor to open when the filters' input capacitive kVAR (not inductive kVAR) exceeds the Target kVAR Setpoint. A target hysteresis setpoint can be used to decide when the contactor recloses. For example, if the Target kVAR Setpoint is 54 and the Target kVAR Hysteresis is 10. The contactor will open when the Filter's input kVAR exceeds 54 kVAR, but the contactor will not close until the Filter's input kVAR falls below 44 kVAR.
- Debug Force Close- Automatic contactor mode. It will force the contactor to close regardless of any active faults being active. After 15 minutes the PQconnect board will go back to its previous Contactor Mode or until another mode is selected. It is recommended not to set this Contactor Mode unless explicitly told by a Tech-Support Engineer. Unknown damage could be done to the filter. This mode is only available for Filter's with PQconnect firmware C3 and above.

Save Settings

It saves any modified settings so that they remain after a power cycle. Saving the settings will automatically open the contactor.

Reset PQconnect

An easy and effective way to power cycle the Filter's PQconnect board. Any unsaved settings will be lost. Resetting the board will open the contactor if the contactor state is closed.

Add-On Profile Alert Management Page

The *Alert Management Table* describes and provides a means to change how the filter responds to certain status conditions and what events trigger them. All possible alert statuses that can be incurred during operation are listed in the table. Typically, a user will leave the table to its default settings but can turn off/on certain statuses, which can be helpful in some specific applications.

However, suppose a status condition gets triggered during the regular operation of the filter. In that case, the "Summary" screen of the Add-On Profile Status section will display the most recent fault along with a coloring coding scheme of the severity of that status. A blue status condition is considered an informational indicator; yellow status conditions are caution indicators. These active alerts should be managed as soon as possible.

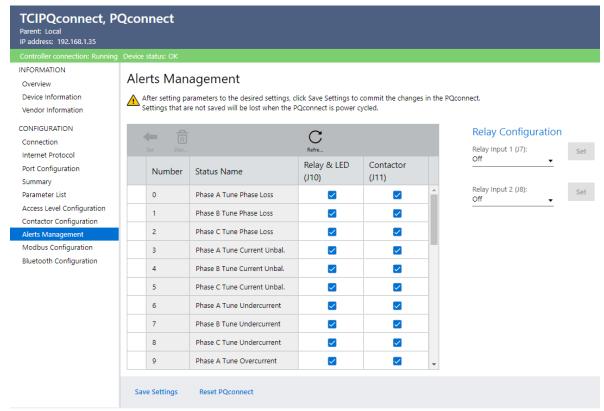


Figure 68: Harmonic Filter AOP Alert Management Page

Alert Event Options:

Two main events can be configured for each Alert option in the list of checkboxes: "*Relay & LED*" and "*Contactor*." When the "*Relay & LED*" option is selected, the PQconnect board inside the filter will illuminate an LED and close the custom relay output, allowing the user to connect to an external device. On the other hand, choosing the '*Contactor*' option will automatically open the filter's internal contactor when the status condition is met, resulting in the removal of the tuned circuit from the filter's circuit.

Alert Status Table:

Below is the list of alerts the Filter monitors and the parameters under which they are categorized (e.g., Status Line, Status Filter, Status Load). These parameters can be thought of as the generated statuses triggered by the environment in which the filter is placed.

The preferred order for listing the status detection options is defined as follows:

Priority	Alert	Alert Severity
0	Phase A Tune Phase Loss	Caution
1	Phase B Tune Phase Loss	Caution
2	Phase C Tune Phase Loss	Caution
3	Phase A Tune Current Unbal.	Caution
4	Phase B Tune Current Unbal.	Caution
5	Phase C Tune Current Unbal.	Caution
6	Phase A Tune Undercurrent	Caution
7	Phase B Tune Undercurrent	Caution
8	Phase C Tune Undercurrent	Caution
9	Phase A Tune Overcurrent	Caution
10	Phase B Tune Overcurrent	Caution
11	Phase C Tune Overcurrent	Caution
12	Under Temperature	Information
13	Over Temperature	Information
14	CPU Fault	Caution
15	Tune Reactor Thermal SW	Information
16	Reclose Limit	Information
17	NCP Fault A	Caution
18	NCP Fault B	Caution
19	Line Reactor Thermal SW	Information
32	Phase A Line Phase Loss	Information
33	Phase B Line Phase Loss	Information
34	Phase C Line Phase Loss	Information
35	Phase A Line Overvoltage	Information
36	Phase B Line Overvoltage	Information
37	Phase C Line Overvoltage	Information

Priority	Alert	Alert Severity
38	Frequency Mismatch	Caution
39	High Voltage THD	Information
40	Phase Rotation	Information
48	Phase A Load Current Unbal.	Information
49	Phase B Load Current Unbal.	Information
50	Phase C Load Current Unbal.	Information
51	Phase A Load Overcurrent	Information
52	Phase B Load Overcurrent	Information
53	Phase C Load Overcurrent	Information

Relay Input 1 & 2:

Two Input relays are available to the Filter to alert the user if the terminals J7/J8 are shorted. An external relay (not on the PQconnect) can provide a signal to the PQconnect's "Relay Input 1" & "Relay Input 2". The Contactor Control Mode must be set to 'Relay" to use this feature.

External Input defines the relay as an input for the contractor if it is in relay-controlled mode. If both relays are configured as External Input, their input is treated as either or. The table below gives a general overview of Relay Input Settings options.

"*Tune Thermal SW*" and "*Line Thermal SW*" indicate that the relay is tied to a thermal sensor switch on either the tuning or mainline voltage lines. A signal from the relay in these modes will trigger the associated event in the system.

Relay Input Options	Terminals are shorted	Terminals are un-shorted
Tune Thermal SW	No Alert, Temperature is normal	Alert Triggered, Temperature is high
Line Thermal SW	No Alert, Temperature is normal	Alert Triggered, Temperature is high
Reset Command	No change	Reset Alerts & resume normal operation
External Input	Contactor instructed to Open	Contactor instructed to close

The Relay Input option "*Reset Command*" will reset the contractor back to its configured mode if it was triggered open by a fault or other means. This is the same action as pressing "*Reset Contractor*" on the Contractor Control Screen.

Add-On Profile Modbus Configuration Page

The Modbus Configuration Page allows the user to change the Filter's Modbus Settings. When changing the device's Modbus settings, the user will select *apply* and *save* settings after configuring. Afterward, the user must *reset* the board by selecting "*Reset PQconnect*."

One thing to note is that the slave address, baud rate, and parity settings must be the same on both the PQvision Desktop and the device for the communication to work via PQvision desktop.

Modbus Settings:

- Slave Address: Filter's PQconnect Modbus Address, lets the board know to whether or not to ignore the message.
- Baud Rate: Baud rate is the speed of communication. The default value is 115200.
- Parity: Used for error detection. Must match that of the master Modbus settings.

TCIPQconnect, PQconnect				
IP address: 192.168.1.35	Davies status OV			
Controller connection: Running INFORMATION Overview Device Information Vendor Information CONFIGURATION Connection Internet Protocol Port Configuration Summary Parameter List Access Level Configuration Contactor Configuration Alerts Management Modbus Configuration Bluetooth Configuration	Device status: OK After setting parameters to the desired settings, click Save Settings to commit the changes in the PQconnect. settings that are not saved will be lost when the PQconnect is power cycled. Marce Settings on this page will not take effect until the PQconnect has been reset. Click Reset PQconnect to reset the device. Slave Address: 10 4			
	Save Settings Reset PQconnect			

Figure 69: Harmonic Filter AOP Modbus Configuration Page

Add-On Profile Bluetooth Configuration Page

The Bluetooth section provides configuration options for the onboard Bluetooth device on every harmonic filter. Bluetooth will be enabled by default, and users can turn the Bluetooth module on or off at tech and factory access. Technicians can also modify the device identifier to a unique numerical value ranging from 0 to 99; however, this will require the user to save the settings afterward. Users can also view the current wireless passkey of their filter and or change it if needed.

TCIPQconnect, P Parent: Local IP address: 192.168.1.35	Qconnect						
Controller connection: Running	Device status: OK					Co	onnected
INFORMATION Overview Device Information Vendor Information CONFIGURATION Connection	Settings that are not saved will be lost	I settings, click Save Settings to commit the changes i when the PQconnect is power cycled. effect until the PQconnect has been reset.	in the PQconnect.				
Internet Protocol Port Configuration Summary Parameter List Access Level Configuration Contactor Configuration Alerts Management Modbus Configuration Bluetooth Configuration	Communication Settings Communication: Enabled Device ID: (0 - 99) Security Settings Security Mode: Low Security . Set	Advertising Disconnect Disconnect Detete Bond Info Passkey: 111111 Set	Radio Version: B4 BGM Version: BGM111				
	Save Settings Reset PQconnect						
				ок	Apply	Cancel	Help

Figure 70: Harmonic Filter AOP Bluetooth Configuration Page

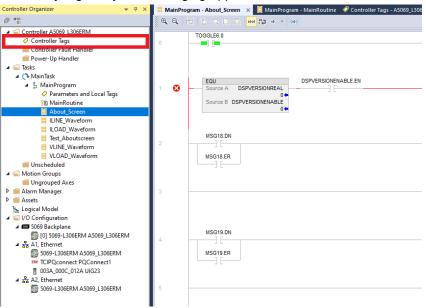
Device ID: The Bluetooth numeric identifier allows PQvision mobile to identify different filters within a 100ft range. The range for this Bluetooth Device ID is 0-99.

Security Options: The Filter's Bluetooth device can be set to use basic or high security. Depending on the security level, the security settings will change to match the expected configuration.

- Under basic security, the passkey used to connect via Bluetooth will match the Filter's serial number. It can be changed via PQvision Desktop and the Add-On Profile, but it is not recommended unless warranted.
- Under high-security access, the Filter has the option of accepting and denying any new connections, and a randomized passkey is created for every new connection. The current connection status of the Bluetooth module is also described and shown on the Bluetooth settings menu, which can be changed from connected to idle to not connected.

Connection Status Options: The Filter's Connect status will determine if it is paired with another device. Possible Connection statuses are *Idle, Advertising, Connected, Not Responding, Radio Disabled, and Firmware Mismatch.*

Note: The Connection Status Option, Not Responding, Radio Disabled, and/or Firmware Mismatch will only be detectable for PQconnect firmware version RevC3 and above.


Save Settings: Saves any modified settings so that they will remain after a power cycle. Saving the settings will automatically open the contactor.

Reset PQconnect: An easy and effective way to power cycle the Filter's PQconnect board. Any unsaved settings will be lost.

Using Explicit Controller Messaging

To leverage Explicit Controller Messaging in Studio 5000, follow these steps to establish efficient and direct communication between controllers.

1. Begin by navigating to the "Controller Tags" section in the project tree and configure the necessary tags for your messaging application.

Figure 71: About Screen

- 2. Next, access the "Communication" tab within the tag properties and enable "Explicit Controller Messaging".
- Import your PQconnect Controller under "I/O Configuration" Section in the Project Tree, make sure you select your ethernet section. Follow Viewing the PQconnect device in RSLogix 5000.
- 4. Once configured, incorporate these tags into your ladder logic or structured text routines to initiate explicit messaging transactions by utilizing the messaging functions providing by Studio 5000 to send and receive data between controllers. Below is an example of Message Block configuration for getting any Parameter in the PQconnect Board. Note: Make sure to set your Communication Path to your device name. For instance, number review EtherNet/IP Register Map Section of this Manual.

Message Configu	ration - MSG13			×
Configuration Con	mmunication Tag			
Message Type:	CIP Generic		~	
Service Get At Type:	ttribute Single	~	Source Element:	~
Service	(Hex) Class: a2	(Hex)	Source Length:	0 (Bytes)
Code: e Instance: 160	Attribute: 5	(Hex)	Destination Element:	UnitSerialNum2 🗸
Instance: 160	Attribute: 5	(nex)		New Tag

Figure 72: Message Block Configuration

Regular monitoring and thorough testing of explicit messaging interactions within Studio 5000 will help you optimize the performance of your industrial automation system and streamline inter-controller communication

Using Implicit Controller Tags

In Studio 5000, Implicit Controller Messaging offers a seamless way to establish communication between various devices within an industrial automation system. To implement Implicit Controller Messaging follow the steps below:

- 1. Start by creating and configuring the necessary I/O tags in the "Controller Tags" section of the project tree. These tags will represent the data you intend to **exchange between devices**.
- Import your PQconnect Controller under "I/O Configuration" Section in the Project Tree, make sure you select your ethernet section. Follow Viewing the PQconnect device in RSLogix 5000.
- 3. Utilize ladder logic or structured text routines to read and write data to the configured I/O tags. As the data is exchanged automatically based on the configuration, there is no need for explicit commands to initiate communication.
- 4. Validate that the parameter "PROC_DATA_CMD_EN" is set to 1 in your PQconnect device.

Regularly monitor the data flow and use diagnostic tools provided by Studio 5000 to troubleshoot any communication issues. Implicit Controller Messaging streamlines data exchange, contributing to efficient automation processes and enhanced connectivity in your industrial setup.

Reading and writing to PQconnect Waveform Arrays

The waveform data displayed by the PQconnect is available over EtherNet/IP using the ADI object class with the code **0xA2** to access data. To implement Explicit PQconnect Waveform Arrays follow the steps below:

 Begin by navigating to the "Controller Tags" section in the project tree and configure the necessary tags for your messaging application. Make sure that the data type and style matches the Waveform array you are attempting to get. For example, for accessing VLineBCPlot for Read/Write the datatype should be INT for an array size of 192 bytes. An example is shown below:

Properties				•	џ
	<u>به</u> الم	Extended	Properties		•
▲ Gener	al				۸
Name			VLineBCPlot		
Descrip	ption				
Usage			<controller></controller>		
Туре			Base		
Alias F	or				
Base Ta	ag				
Data Tj	ype		INT[192]		
Scope			A5069_L306ERM		
Extern	al Access		Read/Write		
Style			Decimal		
Consta	ant		No		
Requir	ed				
Visible					
Alarms	s		0		

Figure 73: VLineBCPlot for Read/Write

2. Once configured, incorporate these tags into your ladder logic or structured text routines to initiate explicit messaging transactions by utilizing the messaging functions providing by Studio 5000 to send and receive data between controllers. Below is an example of Message Block configuration for getting any Parameter in the PQconnect Board. Note: Make sure to set your Communication Path to your device name. For instance, number review EtherNet/IP Waveform Data Section of this Manual. An example is shown below for

VLineBCPlot waveform array.

Message Configuration - MSG02

message coning	juration	- 1013002						~
Configuration	Communic	cation Ta	g					
Message Type	e	CIP Gener	ic		~			
Service Get	Attribute	Single		~	Source Element:			~
					Source Length:	0	*	(Bytes)
Service Code:	(He)) Class:	a2	(Hex)	Destination	VLine	BCPlot[0	J ~ I
Instance: 333	3	Attribute:	5	(Hex)	Element:	New	Tag	

Figure 74: VLineBCPlot Waveform Array Example

3. This will gather all the data for the waveform array. To grab one value of the array at every index. A counter and move function block will have to be used in order to get store one value in a controller tag. A sample Ladder logic for this is shown below for VLineBCPlot. Note: Local tags were created in this process for the CTU and MOV function block. Along with an INT controller Tag VINEB.

MSG02 DN	CTU Counter Preset Accum	r COUNT[2] -(CU)
	MOV: Source Dest	ce COUNT[2].ACC 96 ← index2 96 ←
		COUNT[2] (RES)
VLNE START BIT TOGGLE10	MOV Source VL Dest	LineBCPlot[index2] 3 VLINEB 3 €

Figure 75: Sample Ladder Logic for VLineBCPlot

EtherNet/IP EDS File and Conformance Info

The EDS file for the EtherNet/IP communication interface can be read from the PQconnect board or is available from the TCI website (<u>EtherNet/IP EDS File</u>) or available via TCI technical support (direct dial 414-357-4541, email <u>tech-support@transcoil.com</u>)

For a description of the input and output data available over the EtherNet/IP interface, reference the <u>EtherNet/IP Register Map</u> in this user manual.

EtherNet/IP ODVA Declaration of Conformance Information can be found on TCI website. (ODVA Declaration of Conformance Pdf)

EtherNet/IP Register Map

All EtherNet/IP Parameters in the register map can be accessed via explicit controller messaging via a generic CIP message block in Rockwell Studio 5000. The class ID for all Parameters will be **0xA2** in hex with the Instance ID corresponding to the Register Map Instance ID value. Please note that the Register Map tables may not match the EDS file groups parameters and some parameters may only be kept in reservation for future use.

Status Register Map

This register map contains Filter and Line Status parameters used by the passive filter. Please reference the Filter Status Table in the IOM if needed.

Table 43 : Status	Feedback and Set	point Parameters	Register Map

Parameter Name (EtherNet/IP Name)	Instance ID	Description	Туре	Default & Ranges	Notes
USER_STATE (UserState)	206	User State	R	Default:0	User State Parameter 00 = INIT_START 01 = INIT_DELAY 02 = INIT_E2_CHIP 03 = INIT_FLASH_TEST 04 = WRITE_FLASH_TEST 05 = SETUP_FLASH 06 = SETUP_NON_CAL_FLASH 07 = SAVE_CURRENT_VALUES 08 = STAMP_EE 09 = INIT_FROM_DEFAULTS 10 = INIT_FROM_FLASH 11 = EXECUTE_PARAM_FUNCTIONS 12 = PARAM_INIT_FINISH 13 = RESTORE_DEFAULTS 14 = RESTORE_NON_CAL_DEFAULT 15 = INIT_SAVE_CURRENT_VALUES 16 = REBOOT 17 = SETUP_UNIT_CAL_FLASH 18 = RESTORE_UNIT_CAL_DEFAULT
CNT_CLOSED (CntClosed)	272	Filter tuned circuit contactor closed	R	Default:0	Indicates the status of the Filters tuned circuit contactor. 0 = Contactor Closed 1 = Contactor Open
SYS_POWER_ON (PowerOn)	273	Filter powered on	R	Default:0	Indicates if the filter has input power available 0 = Power Off 1 = Power On
SYS_STATUS_OK (StatusOK)	274	Filter status OK	R	Default:0	Indicates filters status 0 = Filter is operating 1 = Filter has indicated status warning
SYS_AT_CAPACITY (AtCapacity)	275	Filter at maximum capacity	R	Default:0	Indicates if the filter is running at its maximum current capacity 0 = Nominal 1 = At Capacity

STATUS_FILTER_A (FilterStatusActiveA)	279	Filter status detection active A bit mask	R	Default:0	Reference Filter Status Table in IOM To enabled desired status detections, enter bit mask from table by converting to decimal Range: 0 to 65535
STATUS_FILTER_B (FilterStatusActiveB)	280	Filter status detection active B bit mask	R	Default:0	
STATUS_LINE (LineStatusActive)	281	Line status detection active bit mask	R	Default:0	Reference Filter Status Table in IOM To enabled desired status detections, enter bit mask from table by converting to decimal Range: 0 to 65535
STATUS_FILTER_LOAD (LoadStatusActive)	282	Filter load status detection bit mask	R	Default:0	Reference Filter Status Table in IOM To enabled desired status detections, enter bit mask from table by converting to decimal Range: 0 to 65535
STATUS_FILTER_A_ENABLE_RO (FilterStatusEnabledA)	283	Filter status A detection enable bit mask	R	Default:0	Reference Filter Status Table in IOM To enabled desired status detections,
STATUS_FILTER_B_ENABLE_RO (FilterStatusEnabledB)	284	Filter status B detection enable bit mask	R	Default:0	enter bit mask from table by converting to decimal Range: 0 to 65535
STATUS_LINE_ENABLE_RO (LineStatusEnabled)	285	Line status detection enable bit mask	R	Default:0	Reference Filter Status Table in IOM To enabled desired status detections, enter bit mask from table by converting to decimal Range: 0 to 65535
STATUS_FILTER_LOAD_ENABLE_RO (LoadStatusEnabled)	286	Filter load status detection enable bit mask	R	Default:0	Reference Filter Status Table in IOM To enabled desired status detections, enter bit mask from table by converting to decimal Range: 0 to 65535
PARAM_STATE (ParamState)	287	Parameter state	R	Default:0	Indicates the present state of the parameter state machine. 00 = INIT_START 01 = INIT_DELAY 02 = INIT_E2_CHIP 03 = INIT_FLASH_TEST 04 = WRITE_FLASH_TEST 05 = SETUP_FLASH 06 = SETUP_NON_CAL_FLASH 07 = SAVE_CURRENT_VALUES 08 = STAMP_EE 09 = INIT_FROM_DEFAULTS 10 = INIT_FROM_FLASH 11 = EXECUTE_PARAM_FUNCTIONS 12 = PARAM_INIT_FINISH 13 = RESTORE_DEFAULTS 14 = RESTORE_NON_CAL_DEFAULTS 15 = INIT_SAVE_CURRENT_VALUES 16 = REBOOT 17 = SETUP_UNIT_CAL_FLASH 18 = RESTORE_UNIT_CAL_DEFAULTS

SYS_STATE (SysState)	288	System state	R	Default:0	Indicates the present state of the system state machine (Read Only) 00 = Initialization State Machine 01 = Initialization Parameters 02 = Power on Delay 03 = Unit State Configuration Check 04 = Reset 05 = Force Open Contactor 06 = Force Close Contactor 07 = Auto Load Open 08 = Auto Load Open 08 = Auto Load Close 09 = Auto kVAR Close 10 = Auto kVAR Close 11 = External Open 12 = External Close 13 = No Contactor 14 = Contactor Closed Inhibited 15 = Calibrate offsets 16 = Calibrate Magnitude 17 = No Communication 18 = Communication Configuration 19 = PCB Calibration Check 20 = Unit Calibration Check 22 = Unit in Contactor Debug Close
CNT_STATUS (CntStatus)	289	Contactor command status	R	Default:0	Indicates the present contactor status command
RELAY_INPUT_STATUS (RelayInputStatus)	290	Digital relay input status	R	Default:0	Filter Relay Input Status, 0b00 = Relay 1 (Temp Okay), Relay 2 (Temp Okay) 0b01 = Relay 1 (Temp Hot), Relay 2 (Temp Okay) 0b10 = Relay 1 (Temp Okay), Relay 2 (Temp Too Hot) 0b11 = Relay 1 (Temp Hot), Relay 2 (Temp Hot)
FIELDBUS_STATUS_A (FBStatusA)	294	Field Bus communication status A Register	R	Default:0	Ethernet Module Status Register A Notifies the User of the status of the EtherNet/IP Module.
FIELDBUS_STATUS_B (FBStatusB)	295	Field Bus communication status B Register	R	Default:0	Ethernet Module Status Register B Notifies the User of the status of the EtherNet/IP Module.
SYS_NULL_STAT (PCBCalStatus)	296	Factory PCB calibration status	R	Default:0	System PCB Calibration Status 0 = Not Calibrated 1 = PCB Calibrated (Completed by Factory)
SYS_MAG_CAL_STATUS (UnitCalStatus)	300	Unit calibration completed status	R	Default:0	Six-bit bitmask of Calibration Status of Current Channels 0b000001 = channel 1 cal complete 0b000011 = channel 1 and 2 cal complete 0b111111 = channel 1 to 6 cal complete
HISTORY_LOG_STATUS (HistoryLogStatus)	312	History Log Status Value	R	Default:0	Indicates Status of the History Log 0 = Initializing History Log 1 = Successfully Reading History 2 = Out of Bounds history register 3 = EEPROM is busy

STATUS_FILTER_A_RELAY_ACTION (FilterStatusRelayAEn)	15	Filter status A relay action enable bit mask	R/W	Default:9 Range:0 to 65535	Reference Filter Status Table To Enable desired status detections, enter bit mask from table by
STATUS_FILTER_B_RELAY_ACTION (FilterStatusRelayBEn)	16	Filter status B relay action enable bit mask	R/W	Default:49151 Range:0 to 65535	converting to decimal. If a status is active and the bit corresponding to that status in this mask is set, the relay will be activated. 0 = Disabled 65535 = All enabled
STATUS_LINE_RELAY_ACTION (LineStatusRelayEn)	17	Line status relay action enable bit mask	R/W	Default:71 Range:0 to 65535	Reference Line Status Detection bits To Enable desired status detections, enter bit mask from table by converting to decimal. If a status is active and the bit corresponding to that status in this mask is set, the relay will be activated 0 = Disabled 65535 = All enabled
STATUS_FILTER_LOAD_RELAY_ACTION (LoadStatusRelayEn)	18	Filter load status relay action enable bit mask	R/W	Default:63 Range:0 to 65535	Reference load status detection bits table To Enable desired status detections, enter bit mask from table by converting to decimal. If a status is active and the bit corresponding to that status in this mask is set, the relay will be activated. 0 = Disabled 65535 = All enabled
STATUS_FILTER_A_CNT_ACTION (FilterStatusCntAEn)	19	Filter status A tune contactor action enable bit mask	R/W	Default:1 Range:0 to 65535	Reference Filter Status Table in IOM To enabled desired status detections, enter bit mask from table by
STATUS_FILTER_B_CNT_ACTION (FilterStatusCntBEn)	20	Filter status B tune contactor action enable bit mask	R/W	Default:36863 Range:0 to 65535	converting to decimal. 0 = Disabled 65535 = All enabled
STATUS_LINE_CNT_ACTION (LineStatusCntEn)	21	Line status tune contactor action enable bit mask	R/W	Default:64 Range:0 to 65535	Reference Line Status Detection bits To Enable desired status detections, enter bit mask from table by converting to decimal. If a status is active and the bit corresponding to that status in this mask is set, the relay will be activated 0 = Disabled 65535 = All enabled
STATUS_FILTER_LOAD_CNT_ACTION (LoadStatusCntEn)	22	Filter load status tune contactor action enable bit mask	R/W	Default:0 Range:0 to 65535	Reference load Status Table in IOM To enabled desired status detections, enter bit mask from table by converting to decimal. 0 = Disabled 65535 = All enabled
HISTORY_LOG_REQUEST (HistReqCmd)	189	Status detection history record request command	R/W	Default:0	

Device Register Map

This register map contains the main Device parameters used to define the Filter software, Bluetooth, EtherNet/IP, and Input parameters. Note that some parameters shown below may not exist in the parameter database/ or shown in PQVision. These parameters have been reserved for future use.

Table 44 : Device Feedback and Setpoint Parameters Register Map

	•		Ŭ	•	
Parameter Name (EtherNet Name)	Instance ID	Description	Туре	Default & Ranges	Notes
DSP_SW_VER (DSPFwVer)	207	Digital Signal Processor DSP firmware version	R	Default:0	Software Revision Code for Processor Two 8bit ASCII characters 0x0141 = ASCII for "A1"
HMS_SW_VER (FBFirmwareVer)	209	Fieldbus communications processor firmware version	R	Default:0	EtherNet Module Model Number
BGM_SW_VER (WLFirmwareVer)	211	Wireless communications firmware version	R	Default:0	Software Revision Code for Bluetooth Processor Two 8bit ASCII characters 0x4234 = ASCII for "4B"
PRODUCT_LINE_NUM (ProdLineNum)	213	Product line identification number	R	Default:0	EtherNet/IP Only: Reserved Does not exist in Database
PRODUCT_TYPE_NUM (ProdTypeNum)	214	Product type identification number	R	Default:0	EtherNet/IP Only: Reserved Does not exist in Database
LINE_VOLTAGE (GridVoltage)	215	Configured utility grid voltage.	R	Default:0	Filter Input Voltage 4800 = 480.0
LINE_FREQ (GridFrequency)	216	Utility grid frequency	R	Default:0	Filter Input Frequency 500 = 50.0
LINE_ROT (GridRotation)	217	Utility grid phase rotation	R	Default:0	Filter Input Phase Orientation 1 = ABC Rotation Expected 2 = ACB Rotation Expected
LINE_LOCK (GridSyncLocked)	218	Utility grid synchronization locked	R	Default:0	Filter Utility Grid Synchronous Locked (PLL) 0 = Not Locked 1 = Locked
CURRENT_WAVEFORM_ DATA_FORMAT (WaveformFormat)	7	Waveform data format	R/W	Default:0 Range:0 to 1	Changes the scaling of the waveforms displayed on PQvision 0 = A / 10 1 = Per Unit 10=1.0A or per unit with base of 16384
RATED_CURRENT (RatedCurrent)	10	Unit rated current	R/W	Default:2500 Range:30 to 15000	Filter rated Current. 10 = 1.0 Amps Range: 3 to 1500 Arms

5.0 PQconnect Connectivity

					Filter Rated Voltage
RATED_VOLTAGE (RatedVoltage)	11	Unit rated voltage	R/W	Default:4800 Range:1200 to 6900	10 = 1.0 Volts Range: 120 to 690 Vrms
RATED_FREQUENCY (RatedFreq)	12	Unit rated utility grid frequency, (Hz)	R/W	Default:60 Range:50 to 60	Filter Rated Frequency
RELAY_INPUT_1_CONFIG (Relay1Config)	40	Relay input 1 configuration	R/W	Default:0 Range:0 to 4	Customer External Control Input 1: J7 of the PCB 0 = Disabled 1 = Tuning Reactor Thermal Switch Input 2 = Line Reactor Thermal Switch Input 3 = Reset Command 4 = External Control Input
RELAY_INPUT_2_CONFIG (Relay2Config)	41	Relay input 2 configuration	R/W	Default:0 Range:0 to 4	Customer External Control Input 2: J8 of the PCB 0 = Disabled 1 = Tuning Reactor Thermal Switch Input 2 = Line Reactor Thermal Switch Input 3 = Reset Command 4 = External Control Input
STATUS_REACTOR_ SWITCH_DELAY (RelayInDelay)	42	Relay input/reactor thermal switch delay time, (sec)	R/W	Default:0 Range:0 to 0	EtherNet/IP Only: Reserved Does not exist in Database
SYS_SERIAL_NUM_2 (UnitSerialNum2)	160	Upper 16 bits of job number of the unit serial number	R/W	Default:0 Range:0 to 65535	Unit serial number section - upper 16 bits of 32-bit unit job number Parameter contains UUUU in the UUUULLLL-NN serial number format.
SYS_SERIAL_NUM_1 (UnitSerialNum1)	161	Lower 16 bits of job number of the unit serial number	R/W	Default:0 Range:0 to 65535	Unit serial number section - lower 16 bits of 32-bit unit job number Parameter contains LLLL in the UUUULLLL-NN serial number format.
SYS_SERIAL_NUM_0 (UnitSerialNum0)	162	Line number of the unit serial number	R/W	Default:0 Range:0 to 65535	Unit serial number section - two-digit unit number Parameter contains NN in the UUUULLLL- NN serial number format.
PCB_SERIAL_NUM_1 (PCBSerialNum1)	163	Upper 16 bits of the PCB serial number	R/W	Default:0 Range:0 to 65535	PCB serial number section Upper 16 bits of 32-bit unit job number Parameter contains UUUU in the UUUULLLL-NNN serial number format.
PCB_SERIAL_NUM_0 (PCBSerialNum0)	164	Lower 16 bits of the PCB serial number	R/W	Default:0 Range:0 to 65535	PCB serial number section Lower 16 bits of 32-bit unit job number Parameter contains LLLL in the UUUULLLL-NNN serial number format.
PCB_TEST_NUM (PCBTestNum)	165	Test number of the PCB serial number	R/W	Default:0 Range:0 to 65535	PCB serial number section three-digit unit number Parameter contains NNN in the UUUULLLL- NNN serial number format.

RATED_STEP_1_CAP (RatedStepCap1)	181	Unit rated capacitance for tune step 1	R/W	Default:575 Range:0 to 20000	Filter rated (step 1) capacitance Used for tune circuit no load current. 10 = 0.1uFarad
RATED_STEP_2_CAP (RatedStepCap2)	182	Unit rated capacitance for tune step 2	R/W	Default:0 Range:0 to 20000	Filter rated (step 2) capacitance. Used for tune circuit no load current. 10 = 0.1uFarad Only for filters with dual tuned circuits
RATED_CAP_CONFIG (RatedCapConfig)	183	Unit rated capacitance configuration	R/W	Default:0 Range:0 to 1	Filter rated capacitance configuration Used for tune circuit no load current 0 = Delta 1 = Wye

Control Register Map

This register map contains parameters which are used to control the

HarmonicGuard/HarmonicShield filter. Note that some parameters shown below may not exist in the parameter database/ or shown in PQVision. These parameters have been reserved for future use and are enabled in EtherNet/IP EDS File.

Note: All parameters with an asterisk (*) in the description will require the Tech level access codes parameter key A: 0x007D (125) and parameter key B: 0xEA6E (60014). All parameters are enabled for communication to EtherNet/IP unless explicitly stated otherwise in the Notes Column of the Table.

Table 45: Control Feedback and Setpoint Parameters Register Map

Devemater Name	Instance			DefeIf 9	
Parameter Name (EtherNet Name)	Instance ID	Description	Туре	Default & Ranges	Notes
T_AMBIENT (TControl)	276	Filter controls temperature	R	Default:0 Range: -75C to 75C	Board will give a status condition of overtempt if it exceeds 75C or under-temp if the temperature descends past -40C. 10 = 1.0 deg C Range: -75C to 75C
SYS_INIT_COMPLETE (InitCmpl)	277	Controls start up init and calibration check complete	R	Default:0	EtherNet/IP Only: Reserved Does not exist in Database
CAP_DEGREDATION_WARNING (CapWrn)	278	Filter capacitor degradation warning	R	Default:0	EtherNet/IP Only: Reserved Does not exist in Database
SYS_DS_MODE (DSMode)	291	Data simulation mode active	R	Default:0	Indicates if the Processor is in data simulation mode 0 = Not in Data Sim Mode 1 = Data Sim Mode
CONFIG_MODE_ACTIVE (ConfigModeActive)	292	Active feedback sensing configuration mode	R	Default:0	Indicates PQconnect board current sensing mode. 0 = Config Sensing Mode Null 1 = Config Sensing Mode is Auto Selecting 2 = Config Sensing Mode is ABC (Uses all 3 phases for sensing, 8 op-amp configuration) 3 = Config Sensing Mode is AC (Uses Phase A and C for sensing, uses 6 op-amp configuration)
SYS_NULL_TMR (PCBCalTimer)	297	Factory PCB calibration timer value	R	Default:0	System null timer - Indicates whether the unit is calibrating. In units of 10s of milliseconds (600 = 6 seconds)
SYS_USAGE_MIN (CtrlCycMin)	301	Controls processor minimum cycle time usage, (10 = 1.0%)	R	Default:0	

SYS_USAGE_MAX (CtrlCycMax)	302	Processor Max Cycle Usage, (10 = 1.0%)	R	Default:0	
SYS_USAGE_AVG (CtrlCycAvg)	303	Processor Avg Cycle Usage, (10 = 1.0%)	R	Default:0	
PARAM_USER_CMD_REQ (ParamCmd)	1	Parameter save/load command	R/W	Default:1 Range:0 to 300	Note that defaulting the flash will clear all calibration data and require that the calibration procedure be re-run. 0 = Init State 1 = Stop Update 9 = Save Curnt. Values to Flash 21 = Set User Access 25 = Set Tech Access 30 = Set Factory Access 42 = Reboot/Reset PQconnect 100 = Clear History Log 200 = Restore Defaults to Flash 255 = Erase All Calibration Data 300 = Erase Unit Calibration Data
TRACE_GO_DONE (WaveformTrigCmd)	2	Waveform capture trigger command	R/W	Default:0 Range:0 to 1	Indicates whether waveform data is being captured 0 = Capture Done 1 = Start Capture
SYS_RESET (ResetCmd)	3	Contactor reset command	R/W	Default:0 Range:0 to 1	Reset contactor 0 = No Command 1 = Reset Contactor Closed
SYS_CONTROL_MODE (ControlMode)	8	Contactor control mode	R/W	Default:2 Range:0 to 6	Contactor Control Mode Allows the user to keep the contactor always off/on, auto turn on/off based on desired load percentage or kVAR, external relay input, in debug close mode. 0 = Always Open 1 = Always Closed 2= Auto load 3 = Auto kVAR 4 = External Control Input 5 = No contactor 6 = Diagnostic Always Close
SYS_AUTO_CONTACTOR_CLOSE (AutoCloseEn)	9	Enable contactor auto to reclose	R/W	Default:0 Range:0 to 1	Contactor auto reclose, this will attempt to reclose the contactor after it has been open through a status condition 0 = Disable 1 = Enable
CNT_CLOSE_LOAD_THRESHOLD (CntCloseLoadThrsh)	23	Contactor close threshold in load control mode	R/W	Default:30 Range:10 to 100	Contactor close threshold in percent rated current* % rated current

CNT_CLOSE_LOAD_HYSTERESIS (CntCloseLoadHys)	24	Contactor close/open hysteresis in load control mode	R/W	Default:5 Range:2 to 50	Contactor will open when it reaches the hysteresis * % rated current
CNT_CLOSE_DELAY (CntCloseDelay)	27	Contactor close delay time	R/W	Default:5 Range:1 to 3600	second
CNT_OPEN_DELAY (CntOpenDelay)	28	Contactor open delay time	R/W	Default:5 Range:1 to 3600	second
CNT_AUTO_RECLOSE_DELAY (CntAutoReCloseDelay)	31	Contactor auto re-close delay time	R/W	Default:300 Range:120 to 65535	second
CNT_POWER_ON_DELAY (PowerOnDelay)	32	System power on start delay time	R/W	Default:0 Range:0 to 65535	
CNT_AUTO_RECLOSE_ATTEMPTS (CntAutoReCloseNum)	33	Contactor auto re- close max number attempts allowed	R/W	Default:5 Range:1 to 15	Maximum number of contactors auto re-close attempts allowed
CNT_AUTO_RECLOSE_TIMESPAN (CntAutoReCloseTime)	34	Contactor auto re-close max attempt time span, (sec)	R/W	Default:600 Range:300 to 65535	Maximum number of contactors auto re-close attempts time span
BOOTLOADER_START (BootCmd)	39	Bootloader command	R/W	Default:0 Range:0 to 2	Used to navigate to bootloader, which launches the main program 0 = No Action 1 = Start Bootloader 2 = Start Recovery
SYS_MAG_CAL_ENABLE (UnitCalEn)	78	System magnitude Calibration	R/W	Default:0 Range:0 to 1	System Magnitude Calibration 0 = Disable 1 = Enable
SYS_CNT_MIN_OFF_TIME (CntMinOffTime)	113	Contactor minimum open time, (sec)	R/W	Default:60 Range:10 to 300	
SYS_NULL_EN (PCBCalEn)	119	Factory PCB calibration enable	R/W	Default:0 Range:0 to 1	
SYS_CPU_THRESHOLD (CtrlFaultOnset)	159	Controls Processor fault threshold	R/W	Default:12369 Range:0 to 17361	
FIELD_BUS_COMMAND (FBCmd)	180	Field Bus communication module command input	R/W	Default:0 Range:0 to 255	
CT_ENABLE (CTEn)	184	Current transformer CT feedback enable	R/W	Default:0 Range:0 to 1	Only used for filters with dual tuned circuits 0 = Disabled 1 = Enabled
CONFIG_MODE (SensingFdbkMode)	187	Feedback sensing	R/W	Default:1 Range:1 to 3	

		configuration mode selection			
FAULT_PHASE_ROTATION (PhaseRotationDetect)	74	Phase rotation status setpoint	R/W	Default:1 Range:0 to 2	Filter expected input phase orientation 0 = Undef 1 = Forward 2 = Reverse
STATUS_CPU_ERROR_DELAY (CtrlFaultDelay)	157	Controls Processor fault delay time, (Sec)	R/W	Default:0	EtherNet/IP Only: Reserved Does not exist in Database
HISTORY_LOG_REQUEST (HistReqCmd)	189	Status detection history record request command	R/W	Default:0 Range:0 to 0	

Communication Register Map

This register map contains parameters which are used to communicate back and forth with the Harmonic Filter. Note that some parameters shown below may not exist in the parameter database/ or shown in PQVision. These parameters have been reserved for future use and are enabled in EtherNet/IP EDS File.

Note: All parameters with an asterisk (*) in the description will require the Tech level access codes parameter key A: 0x007D (125) and parameter key B: 0xEA6E (60014). All parameters are enabled for communication to EtherNet/IP unless explicitly stated otherwise in the Notes Column of the Table.

Table 46 : Communication Feedback and Setpoint Parameters Register Map

Parameter Name (EtherNet Name)	Instance ID	Description	Туре	Default & Ranges	Notes
BGM_MODULE_STATUS (WLStatus)	293	Wireless pairing status	R	Default:0	Status of the BGM (Bluetooth LE module) 0 = Idle 1 = Advertising 2 = Connected 3 = Not Responding 4 = Radio Disabled 5 = Firmware Mismatch
SYS_INT_HB (IntHeartbeat)	298	System interrupt heartbeat counter	R	Default:0 Range:0 to 65535	Processor Internal Heartbeat Counter Counts and rolls over to zero used to verify Processor Clock.
SYS_BG_HB (BGHeartbeat)	299	System background heartbeat counter	R	Default:0 Range:0 to 65535	Processor background heartbeat Counter Counts and rolls over to zero used to verify processor clock operation
PARAM_KEY_A (ParamKeyA)	4	Parameter access key value A	R/W	Default:0 Range:0 to 65535	Parameter Key Register A User can write the required parameter access key to this parameter and Parameter Key Register B To set the PQconnect board in a different access level.
PARAM_KEY_B (ParamKeyB)	5	Parameter access key value B	R/W	Default:0 Range:0 to 65535	Parameter Key Register B User can write the required parameter access key to this parameter and Parameter Key Register A To set the PQconnect board in a different access level.
MB_SLAVE_ADDRESS (ModbusDeviceID)	35	Modbus device server address	R/W	Default:10 Range:1 to 247	Modbus Slave Address
MB_BAUD_RATE (ModbusBaud)	36	Modbus device baud rate, (bits per second)	R/W	Default:11520 Range:0 to 11520	Modbus Baud Rate 11520 = 115200 baud rate 960 = 9600 baud rate 3840 = 38400 baud rate
MB_PARITY (ModbusParity)	37	Modbus device parity	R/W	Default:2 Range:0 to 2	0 = None 1 = Odd 2 = Even

MB_SAVE_SET_FLAG (ModbusSaveFlag)	38	Modbus RTU save new settings	R/W	Default:0 Range:0 to 2	Modbus Flag Save Settings 0 = Not Saving Settings 1 = Saving Settings"
BLUETOOTH_ENABLE (BTEn)	158	Bluetooth radio enable	R/W	Default:1 Range:0 to 1	Set to Enable BGM 1 = Enabled 0 = Disabled
BGM_STATIC_PASSKEY_A (WLPasskeyA)	174	Upper 16 bits of wireless password	R/W	Default:1 Range:0 to 15	
BGM_STATIC_PASSKEY_B (WLPasskeyB)	175	Lower 16 bits of wireless password	R/W	Default:45575 Range:0 to 65535	
BGM_SECUIRTY_LEVEL (WLSecurityLevel)	176	Wireless security level	R/W	Default:0 Range:0 to 1	BGM Security level. High Security mode blocks new pairing requests. Passkey changes each time a connection is attempted. 0 = Low Security 1 = High Security
BGM_NUMERIC_ID (WLNumericID)	177	Wireless numeric identifier	R/W	Default:0 Range:0 to 9999	
BGM_PAIRING_MODE (WLPairingMode)	178	Wireless pairing mode request	R/W	Default:0 Range:0 to 1	0 = No active request 1 = Active request
BGM_COMMAND (WLCmd)	179	Wireless command input	R/W	Default:0 Range:0 to 255	
POWER_CYC_COUNT (PwrCycCount)	188	Running number of powers on-off cycles	R/W	Default:0 Range:0 to 0	

Power Register Map

This register map contains parameters that are used to store and calculate the power output and input of the harmonic filter. Note that some parameters shown below may not exist in the parameter database/ or shown in PQVision. These parameters have been reserved for future use and are enabled in EtherNet/IP EDS File.

Note: All parameters with an asterisk (*) in the description will require the Tech level access codes parameter key A: 0x007D (125) and parameter key B: 0xEA6E (60014). All parameters are enabled for communication to EtherNet/IP unless explicitly stated otherwise in the Notes Column of the Table.

Table 47 : Power Feedback and Setpoint Parameters Register Map

Parameter Name (EtherNet Name)	Instance ID	Description	Туре	Default & Ranges	Notes
P_LINE_APPARENT_TOTAL (SLine)	258	Line apparent power, (kVA)	R	Default:0 Range: 0 to 1000 kVAR	Total Filter input apparent power.
P_LINE_REAL_TOTAL (PLine)	259	Line real power, (kW)	R	Default:0 Range: 0 to 1000 kVAR	Total Filter input real power.
P_LINE_REACTIVE_TOTAL (QLine)	260	Line reactive power, (kVAR)	R	Default:0 Range: 0 to 1000 kVAR	Total Filter input reactive power: Negative number indicates inductive power; Positive number indicates capacitive power.

5.0 PQconnect Connectivity

P_LINE_POWER_FACTOR (PFLine)	261	Line power factor, (%)	R	Default:0 Range: -1000 to 1000	Filter input Displacement Power Factor – Negative value indicates lagging power factor. 1,000 = 1.00 Unity PF -950 = 0.95 Lagging PF 950 = 0.95 Leading PF
P_LOAD_APPARENT_TOTAL (SLoad)	262	Load apparent power, (kVA)	R	Default:0 Range: 0 to 1000 kVAR	Total Filter output apparent power
P_LOAD_REAL_TOTAL (PLoad)	263	Load real power, (kW)	R	Default:0 Range: 0 to 1000 kVAR	Total Filter output real power
P_LOAD_REACTIVE_TOTAL (QLoad)	264	Load reactive power, (kVAR)	R	Default:0 Range: -1000 to 1000 kVAR	Total Filter output reactive power: Negative number indicates inductive power. Positive number indicates capacitive power
P_LOAD_POWER_FACTOR (PFLoad)	265	Load power factor, (%)	R	Default:0 Range: -1000 to 1000	Filter output Displacement Power Factor – Negative values indicate lagging power factor. 1,000 = 1.00 Unity PF -950 = 0.95 Lagging PF 950 = 0.95 Leading PF
P_LOAD_REAL_MEAS (PLoadAlt)	266	Measured Load real power, (kW)	R	Default:0	
NO_LOAD_CAP_CURRENT (ITuneNoLoad)	308	Unit rated capacitance no load cap current, (Farads)	R	Default:0 Range: 0 to 65535	Expected tune circuit current at no load in tenths of amps.
KVAR_EFFECTIVE (KVAREffective)	309	Effective kVAR after applying kVAR factor, (kVAR)	R	Default:0	Effective nameplate kVAR after kVAR factor. Used for kVAR contactor control 10 = 10KVAR Range: -32768 to 32767
PF_KVAR_SLOPE (KVARSlope)	310	Slope factor applied to nameplate kVAR for kVAR contactor control.	R	Default:0	Slope factor applied to nameplate kVAR for kVAR contactor control. Range: -32768 to 32767
PF_KVAR_INTERCEPT (KVARIntercept)	311	Intercept factor applied to nameplate kVAR for kVAR contactor control., (kVAR)	R	Default:0 Range: 0 to 65535	Intercept factor applied to nameplate kVAR for kVAR contactor control.
CNT_CLOSE_KVAR_THRESHOLD (CntCloseKVARThrsh)	25	Contactor close threshold for kVAR control mode, (kVAR)	R/W	Default:50 Range:0 to 1000	Contactor close threshold for kVAR control negative setpoint = lagging target positive setpoint = leading target
CNT_CLOSE_KVAR_HYSTERESIS (CntCloseKVARHys)	26	Contactor close/open hysteresis in kVAR control mode, (%)	R/W	Default:10 Range:5 to 100	Contactor will open when it reaches the hysteresis

5.0 PQconnect Connectivity

SYS_PF_STEP_1_KVAR (TuneKVAR1)	29	Tune circuit 1, (kVAR)	R/W	Default:5 Range:0 to 500	Desired filter kVAR for contactor to enable
SYS_PF_STEP_2_KVAR (TuneKVAR2)	30	Tune circuit 2, (kVAR)	R/W	Default:5 Range:0 to 500	Filter Second Tuned Circuit kVAR (Only used for filters with dual tuned circuits)
PF_KVAR_FACTOR_NL (KVARFactorNL)	185	Factor applied to nameplate kVAR at no load for kVAR contactor control	R/W	Default:105 Range:100 to 140	100 = 1.0
PF_KVAR_FACTOR_FL (KVARFactorFL)	186	Factor applied to nameplate kVAR at full load for kVAR contactor control	R/W	Default:115 Range:100 to 140	100 = 1.0

Voltage Register Map

This register map contains parameters that are used to Line and Tune Voltages in RMS, the voltage in these parameters described by a factor of 10, meaning that a value of 10 indicates 1.0 Vrms. Note that some parameters shown below may not exist in the parameter database/ or shown in PQVision. These parameters have been reserved for future use and are enabled in EtherNet/IP EDS File.

Table 48 : Voltage Feedback and Setpoint Parameters Register Map

Parameter Name (EtherNet Name)	Instance ID	Description	Туре	Default & Ranges	Notes
V_LINE_AB_RMS (VLineABRMS)	219	Line voltage phase AB RMS, (10 = 1.0 Volts)	R	Default:0 Range: 0 to 1000 Vrms	Source Utility Line Phase to Phase Voltage (A-B)
V_LINE_BC_RMS (VLineBCRMS)	220	Line voltage phase BC RMS, (10 = 1.0 Volts)	R	Default:0 Range: 0 to 1000 Vrms	Source Utility Line Phase to Phase Voltage (B-C)
V_LINE_CA_RMS (VLineCARMS)	221	Line voltage phase CA RMS, (10 = 1.0 Volts)	R	Default:0 Range: 0 to 1000 Vrms	Source Utility Line Phase to Phase Voltage (C-A)
V_LOAD_AB_RMS (VLoadABRMS)	234	Load voltage phase AB RMS, (10 = 1.0 Volts)	R	Default:0 Range: 0 to 1000 Vrms	Filter Output Phase to Phase Voltage (A-B)
V_LOAD_BC_RMS (VLoadBCRMS)	235	Load voltage phase BC RMS, (10 = 1.0 Volts)	R	Default:0 Range: 0 to 1000 Vrms	Filter Output Phase to Phase Voltage (B-C)
V_LOAD_CA_RMS (VLoadCARMS)	236	Load voltage phase CA RMS, (10 = 1.0 Volts)	R	Default:0 Range: 0 to 1000 Vrms	Filter Output Phase to Phase Voltage (C-A)
V_TUNE_A_RMS (VTuneABRMS)	246	Tuned circuit voltage phase AB RMS, (10 = 1.0 Volts)	R	Default:0 Range: 0 to 1000 Vrms	
V_TUNE_B_RMS (VTuneBCRMS)	247	Tuned circuit voltage phase BC RMS, (10 = 1.0 Volts)	R	Default:0 Range: 0 to 1000 Vrms	
V_TUNE_C_RMS (VTuneCARMS)	248	Tuned circuit voltage phase CA RMS, (10 = 1.0 Volts)	R	Default:0 Range: 0 to 1000 Vrms	

THVD Register Map

This register map contains parameters that are used to Line and Tune Total Harmonic Voltage Distortion percentages, the THVD percentages are described by a factor of 10, meaning that a value of 10 indicates 1.0 %.

Table 49 : THVD Feedback and Se	etpoint Para	meters Register Ma	р
Demonstern Manuel	line for a second		

Parameter Name (EtherNet Name)	Instance ID	Description	Туре	Default & Ranges	Notes
V_LINE_AB_THD (VLineABTHD)	222	Line voltage phase AB THD	R	Default:0	10 = 1.0%
V_LINE_BC_THD (VLineBCTHD)	223	Line voltage phase BC THD	R	Default:0	10 = 1.0%
V_LINE_CA_THD (VLineCATHD)	224	Line voltage phase CA THD	R	Default:0	10 = 1.0%
V_LOAD_AB_THD (VLoadABTHD)	237	Load voltage phase AB THD	R	Default:0	10 = 1.0%
V_LOAD_BC_THD (VLoadBCTHD)	238	Load voltage phase BC THD	R	Default:0	10 = 1.0%
V_LOAD_CA_THD (VLoadCATHD)	239	Load voltage phase CA THD	R	Default:0	10 = 1.0%
V_TUNE_A_THD (VTuneABTHD)	249	Tuned circuit voltage phase AB THD	R	Default:0	10 = 1.0%
V_TUNE_B_THD (VTuneBCTHD)	250	Tuned circuit voltage phase BC THD	R	Default:0	10 = 1.0%
V_TUNE_C_THD (VTuneCATHD)	251	Tuned circuit voltage phase CA THD	R	Default:0	10 = 1.0%
FAULT_HIGH_THD_ONSET (VLineHighTHDOnset)	71	Voltage THD high onset threshold	R/W	Default:120 Range:20 to 200	Percent rated voltage
FAULT_HIGH_THD_CLEAR (VLineHighTHDClear)	72	Voltage THD high clear threshold	R/W	Default:110 Range:20 to 200	Percent rated voltage)
FAULT_HIGH_THD_DELAY (VLineHighTHDDelay)	73	Voltage THD high delay time,	R/W	Default:20 Range:1 to 3600	seconds
STATUS_HIGH_THD_WARNING_ ONSET (VLineHighTHDWrnOnset)	75	Voltage THD high warning onset threshold, (Percent)	R/W	Default:0 Range:0 to 0	EtherNet//D Only:
STATUS_HIGH_THD_WARNING_ CLEAR (VLineHighTHDWrnClear)	76	Voltage THD high warning clear threshold, (Percent)	R/W	Default:0 Range:0 to 0	EtherNet/IP Only: Reserved Does not exist in Database
STATUS_HIGH_THD_WARNING_ DELAY (VLineHighTHDWmDelay)	77	Voltage THD high warning delay time, (sec)	R/W	Default:0 Range:0 to 0	
V_THD_SCALAR (VTHDScalar)	115	Voltage THD gain adjustment factor	R/W	Default:16384 Range: -32768 to 32767	Value set by Factory

Current Register Map

This register map contains parameters that are used to Line and Tune Currents in Amps RMS. Note that some parameters shown below may not exist in the parameter database/ or shown in PQVision. These parameters have been reserved for future use and are enabled in EtherNet/IP EDS File.

Table 50 : Current Feedback and Setpoint Parameters Register Map
--

Parameter Name	I			Default		
(EtherNet Name)	Instance ID	Description	Туре	& Ranges	Notes	
I_LINE_A_RMS (ILineARMS)	225	Line current phase A RMS, (10 = 1.0 Amps)	R	Default:0	Filter Input Current Phase A Range: 0 to 1000 Arms	
I_LINE_B_RMS (ILineBRMS)	226	Line current phase B RMS, (10 = 1.0 Amps)	R	Default:0	Filter Input Current Phase B Range: 0 to 1000 Arms	
I_LINE_C_RMS (ILIneCRMS)	227	Line current phase C RMS, (10 = 1.0 Amps)	R	Default:0	Filter Input Current Phase C Range: 0 to 1000 Arms	
I_LOAD_A_RMS (ILoadARMS)	240	Load current phase A RMS, (10 = 1.0 Amps)	R	Default:0		
I_LOAD_B_RMS (ILoadBRMS)	241	Load current phase B RMS, (10 = 1.0 Amps)	R	Default:0		
I_LOAD_C_RMS (ILoadCRMS)	242	Load current phase C RMS, (10 = 1.0 Amps)	R	Default:0	Bongo: 0 to 1000 Arms	
I_TUNE_A_RMS (ITuneARMS)	252	Tuned circuit current phase A RMS, (10 = 1.0 Amps)	R	Default:0	 Range: 0 to 1000 Arms 	
I_TUNE_B_RMS (ITuneBRMS)	253	Tuned circuit current phase B RMS, (10 = 1.0 Amps)	R	Default:0		
I_TUNE_C_RMS (ITuneCRMS)	254	Tuned circuit current phase C RMS, (10 = 1.0 Amps)	R	Default:0		

THID Register Map

This register map contains parameters that are used to Line and Tune Currents in Total Harmonic Current Distortion percentages, the THID percentages are described by a factor of 10, meaning that a value of 10 indicates 1.0 %.

Note: All parameters with an asterisk (*) in the description will require the Tech level access codes parameter key A: 0x007D (125) and parameter key B: 0xEA6E (60014). All parameters are enabled for communication to EtherNet/IP unless explicitly stated otherwise in the Notes Column of the Table.

Parameter Name (EtherNet Name)	Instance ID	Description	Туре	Default & Ranges	Notes
I_LINE_A_THD (ILineATHD)	228	Line current phase A THD, (10 = 1.0%)	R	Default:0	
I_LINE_B_THD (ILineBTHD)	229	Line current phase B THD, (10 = 1.0%)	R	Default:0	
I_LINE_C_THD (ILineCTHD)	230	Line current phase C THD, (10 = 1.0%)	R	Default:0	
I_LOAD_A_THD (ILoadATHD)	243	Load current phase A THD, (10 = 1.0%)	R	Default:0	
I_LOAD_B_THD (ILoadBTHD)	244	Load current phase B THD, (10 = 1.0%)	R	Default:0	
I_LOAD_C_THD (ILoadCTHD)	245	Load current phase C THD, (10 = 1.0%)	R	Default:0	
I_TUNE_A_THD (ITuneATHD)	255	Tuned circuit current phase A THD, (10 = 1.0%)	R	Default:0	
I_TUNE_B_THD (ITuneBTHD)	256	Tuned circuit current phase B THD, (10 = 1.0%)	R	Default:0	
I_TUNE_C_THD (ITuneCTHD)	257	Tuned circuit current phase C THD, (10 = 1.0%)	R	Default:0	
I_THD_SCALAR (ITHDScalar)	116	Current THD gain adjustment factor	R/W	Default:16384 Range: -32768 to 32767	Value set by Factory

Table 51 ; THID Feedback and Setpoint Parameters Register Map

TDD Register Map

This register map contains parameters that are used to Line and Tune Currents in Total Harmonic Current Distortion percentages, the THID percentages are described by a factor of 10, meaning that a value of 10 indicates 1.0 %.

Table 52 : TDD Feedback and Setpoint Parameters Register Map

Parameter Name (EtherNet Name)	Instance ID	Description	Туре	Default & Ranges	Notes
I_LINE_A_TDD (ILineATHD)	228	Filter input total Demand Distortion Phase A iTDD, (10 = 1.0%)	R	Default:0	
I_LINE_B_TDD (ILineBTDD)	229	Filter input total Demand Distortion Phase B iTDD, (10 = 1.0%)	R	Default:0	
I_LINE_C_TDD (ILineCTDD)	230	Filter input total Demand Distortion Phase C iTDD, (10 = 1.0%)	R	Default:0	

Scalar Register Map

This register map contains the Scalar parameters used during PCB and Unit Calibration of the filter. Many of the values are set by TCI, LLC and should not be changed unless suggested by an TCI, Application Engineer. Note that some parameters shown below may not exist in the parameter database/ or shown in PQVision. These parameters have been reserved for future use.

Note: All parameters with an asterisk (*) in the description will require the Tech level access codes parameter key A: 0x007D (125) and parameter key B: 0xEA6E (60014). All parameters are enabled for communication to EtherNet/IP unless explicitly stated otherwise in the Notes Column of the Table.

Parameters should not be changed manually by the user, doing so will alter the filter's performance and accuracy.

Table 53 : Scalar Feedback and Setpoint Parameters Register Map

Parameter Name (EtherNet Name)	Instance ID	Description	Туре	Default & Ranges	Notes
V_LOAD_AB_PEAK_RMS_RATIO (VLoadABRatio)	267	Load output peak voltage to RMS ratio phase AB, (Percent)	R	Default:0	- EtherNet/IP Only:
V_LOAD_BC_PEAK_RMS_RATIO (VLoadBCRatio)	268	Load output peak voltage to RMS ratio phase BC, (Percent)	R	Default:0	Reserved Does not exist in Database.
V_LOAD_CA_PEAK_RMS_RATIO (VLoadCARatio)	269	Load output peak voltage to RMS ratio phase CA, (Percent)	R	Default:0	Dalabase.
CT_RATIO (CTRatio)	6	Current Transformer CT ratio primary Amps relative to five Amp secondary, (Amps)	R/W	Default:50 Range:5 to 10000	Dual Turned Circuit Current Transformer (CT) ratios Note: Only required for units with two tuned circuits XXXX:5 where XXXX is the primary turns count of the CT 100 = 1000:5 50 = 500:5 Range 5 to 10000
I_LINE_EST_A_SCALAR (ILineEstAScalar)	86	Magnitude scalar for current calculation line phase A	R/W	Default:6000 Range:-32768 to 32767	
I_LINE_EST_B_SCALAR (ILineEstBScalar)	87	Magnitude scalar for current calculation line phase B	R/W	Default:6000 Range:-32768 to 32767	
I_LINE_EST_C_SCALAR (ILineEstCScalar)	88	Magnitude scalar for current calculation line phase C	R/W	Default:6000 Range:-32768 to 32767	
I_TUNE_EST_A_SCALAR (ITuneEstAScalar)	89	Magnitude scalar for current calculation tune phase A	R/W	Default:4000 Range:-32768 to 32767	 Value set by Factory
I_TUNE_EST_B_SCALAR (ITuneEstBScalar)	90	Magnitude scalar for current calculation tune phase B	R/W	Default:4000 Range:-32768 to 32767	-
I_TUNE_EST_C_SCALAR (ITuneEstCScalar)	91	Magnitude scalar for current calculation tune phase C	R/W	Default:4000 Range:-32768 to 32767	-
V_LOAD_SCALAR_B (VLoadBScalar)	92	Magnitude scalar for load voltage phase BC	R/W	Default:0 Range:0 to 0	EtherNet/IP Only: Reserved Does not exist in Database
V_LINE_SCALAR_A (VLineAScalar)	93	Magnitude scalar for line voltage phase AB	R/W	Default:5982 Range: -32768 to 32767	Value set by Factory

		1			1
V_LINE_SCALAR_B (VLineBScalar)	94	Magnitude scalar for line voltage phase BC	R/W	Default:5982 Range: -32768 to 32767	
V_LINE_SCALAR_C (VLineCScalar)	95	Magnitude scalar for line voltage phase CA	R/W	Default:5982 Range: -32768 to 32767	
V_LOAD_SCALAR_A (VLoadAScalar)	96	Magnitude scalar for load voltage phase AB	R/W	Default:5982 Range:-32768 to 32767	
V_LOAD_SCALAR_C (VLoadCScalar)	97	Magnitude scalar for load voltage phase CA	R/W	Default:5982 Range:-32768 to 32767	
V_TUNE_SCALAR_A (VTuneAScalar)	98	Magnitude scalar for tune voltage phase AB	R/W	Default:5982 Range:-32768 to 32767	
V_TUNE_SCALAR_C (VTuneCScalar)	99	Magnitude scalar for tune voltage phase CA	R/W	Default:5982 Range:-32768 to 32767	
I_LINE_SCALAR_A (ILineAScalar)	100	Magnitude scalar for line current CT phase A	R/W	Default:1091 Range:-32768 to 32767	
I_LINE_SCALAR_C (ILineCScalar)	101	Magnitude scalar for line current CT phase C	R/W	Default:1091 Range:-32768 to 32767	Value set by Factory
I_TUNE_SCALAR_A (ITuneAScalar)	102	Magnitude scalar for tune current CT phase A	R/W	Default:1091 Range:-32768 to 32767	
I_TUNE_SCALAR_C (ITuneCScalar)	103	Magnitude scalar for tune current CT phase A	R/W	Default:1091 Range:-32768 to 32767	-
T_AMBIENT_SCALAR (TAmbientScalar)	104	Magnitude scalar for controls temperature	R/W	Default:12000 Range:-32768 to 32767	-
V_LINE_RMS_SCALAR (VLineRMSScalar)	105	RMS calculation scalar for line voltage	R/W	Default:437 Range:-32768 to 32767	
V_LOAD_RMS_SCALAR (VLoadRMSScalar)	106	RMS calculation scalar for load voltage	R/W	Default:437 Range:-32768 to 32767	
I_LINE_RMS_SCALAR (ILineRMSScalar)	107	RMS calculation scalar for line current	R/W	Default:128 Range:-32768 to 32767	
I_LOAD_RMS_SCALAR (ILoadRMSScalar)	108	RMS calculation scalar for load current	R/W	Default:128 Range:-32768 to 32767	
STATUS_MIN_DETECTION_VOLTAGE (VLoadMinDetect)	109	Minimum voltage to enable status detections, (Percent in rated voltage)	R/W	Default:0 Range:0 to 0	EtherNet/IP Only: Reserved
FUND_MIN_TRACKING_VOLTAGE (VLoadMinTrack)	110	Minimum voltage to enable output voltage frequency tracking, (percent rated voltage)	R/W	Default:0 Range:0 to 0	Does not exist in Database.
I_TUNE_TAP_GAIN (ITuneTapGain)	114	Line reactor tap turn coupling gain	R/W	Default:1820 Range:-32768 to 32767	
V_DIFF_LINE_B_SCALAR (VReactorLineScalarB)	140	Line reactor voltage scalar phase B	R/W	Default:16384 Range:-32768 to 32767	
V_DIFF_LINE_C_SCALAR (VReactorLineScalarC)	141	Line reactor voltage scalar phase C	R/W	Default:16384 Range:-32768 to 32767	Value set by Factory
V_DIFF_TUNE_A_SCALAR (VReactorTuneScalarA)	142	Tune reactor voltage scalar phase A	R/W	Default:16384 Range:-32768 to 32767	value set by Factory
V_DIFF_TUNE_B_SCALAR (VReactorTuneScalarB)	143	Tune reactor voltage scalar phase B	R/W	Default:16384 Range:-32768 to 32767	
V_DIFF_TUNE_C_SCALAR (VReactorTuneScalarC)	144	Tune reactor voltage scalar phase C	R/W	Default:16384 Range:-32768 to 32767	

Calibration Reference Register Map

The Calibration Reference Register map contains parameters used by the PQconnect board for factory calibration of the PCB and the Users Unit. Note that some parameters shown below may not exist in the parameter database/ or shown in PQVision. These parameters have been reserved for future use.

Note: All parameters with an asterisk (*) in the description will require the Tech level access codes parameter key A: 0x007D (125) and parameter key B: 0xEA6E (60014). All parameters are enabled for communication to EtherNet/IP unless explicitly stated otherwise in the Notes Column of the Table.

Parameters should not be changed manually by the user, doing so will alter the filter's performance and accuracy.

Table 54 : Calibration Reference Feedback and Setpoint Parameters Register Map

Parameter Name	Instance				
(EtherNet/IP Name)	ID	Description	Туре	Default & Ranges	Notes
SYS_I_LINE_CAL_A (ILineCalRefA)	79	Reference calibration current line phase A, (10 = 1.0A)	R/W	Default:0 Range:0 to 65535	Input current measured on A phase of the filter
SYS_I_LINE_CAL_B (ILineCalRefB)	80	Reference calibration current line phase B, (10 = 1.0A)	R/W	Default:0 Range:0 to 65535	Input current measured on B phase of the filter
SYS_I_LINE_CAL_C (ILineCalRefC)	81	Reference calibration current line phase C, (10 = 1.0A)	R/W	Default:0 Range:0 to 65535	Input current measured on C phase of the filter
SYS_I_TUNE_CAL_A (ITuneCalRefA)	82	Reference calibration current tune phase A, (10 = 1.0A)	R/W	Default:0 Range:0 to 65535	Tune circuit current measured on A phase of the filter
SYS_I_TUNE_CAL_B (ITuneCalRefB)	83	Reference calibration current tune phase B, (10 = 1.0A)	R/W	Default:0 Range:0 to 65535	Tune circuit current measured on B phase of the filter
SYS_I_TUNE_CAL_C (ITuneCalRefC)	84	Reference calibration current tune phase C, (10 = 1.0A)	R/W	Default:0 Range:0 to 65535	Tune circuit current measured on C phase of the filter
SYS_MAG_CAL_TOL (CalTolerance)	85	Current calculation magnitude calibration tolerance, (10 = 1.0A)	R/W	Default:5 Range:0 to 15000	System mag calibration Tolerance Value used by the PQconnect for setting the threshold for Calibrated reference currents.
					Pass/Fail range. 20 = 0.02 amps tolerance
I_LINE_EST_A_INT_DECAY (ILineEstDecayA)	145	Line current estimation decay phase A	R/W	Default:16375 Range:0 to 65535	
I_LINE_EST_B_INT_DECAY (ILineEstDecayB)	146	Line current estimation decay phase B	R/W	Default:16375 Range:0 to 65535	
I_LINE_EST_C_INT_DECAY (ILineEstDecayC)	147	Line current estimation decay phase C	R/W	Default:16375 Range:0 to 65535	Value set by Factory
I_TUNE_EST_A_INT_DECAY (ITuneEstDecayA)	148	Tune current estimation decay phase A	R/W	Default:16375 Range:0 to 65535	
I_TUNE_EST_B_INT_DECAY (ITuneEstDecayB)	149	Tune current estimation decay phase B	R/W	Default:16375 Range:0 to 65535	

I_TUNE_EST_C_INT_DECAY (ITuneEstDecayC)	150	Tune current estimation decay phase C	R/W	Default:16375 Range:0 to 65535	
I_LINE_EST_A_SIN_NULL (ILineEstCalA)	151	Line current estimation calibration sine phase A	R/W	Default:0 Range: -32768 to 32767	
I_LINE_EST_B_SIN_NULL (ILineEstCalB)	152	Line current estimation calibration sine phase B	R/W	Default:0 Range:-32768 to 32767	Value set by Factory
I_LINE_EST_C_SIN_NULL (ILineEstCalC)	153	Line current estimation calibration sine phase C	R/W	Default:0 Range:-32768 to 32767	Value set by Factory
I_TUNE_EST_A_SIN_NULL (ITuneEstCalA)	154	Tune current estimation calibration sine phase A	R/W	Default:0 Range:-32768 to 32767	Value set by Factory
I_TUNE_EST_B_SIN_NULL (ITuneEstCalB)	155	Tune current estimation calibration sine phase B	R/W	Default:0 Range:-32768 to 32767	Value set by Factory
I_TUNE_EST_C_SIN_NULL (ITuneEstCalC)	156	Tune current estimation calibration sine phase C	R/W	Default:0 Range:-32768 to 32767	Value set by Factory

Offset Register Map

The Offset Register map contains parameters used by the PQconnect board for factory calibration of the PCB and the Users Unit for offsetting any current, voltage, and temperature readings. Note that some parameters shown below may not exist in the parameter database/ or shown in PQVision. These parameters have been reserved for future use.

Note: All parameters with an asterisk (*) in the description will require the Tech level access codes parameter key A: 0x007D (125) and parameter key B: 0xEA6E (60014). All parameters are enabled for communication to EtherNet/IP unless explicitly stated otherwise in the Notes Column of the Table.

Parameters should not be changed manually by the user, doing so will alter the filter's performance and accuracy.

Table 55 : Offset Feedback and Set	tpoint Parameters Register Map
	apoint i aramotoro regiotor map

Parameter Name (EtherNet/IP Name)	Instance ID	Description	Туре	Default & Ranges	Notes
V_THD_OFFSET (VTHDOffset)	117	Voltage THD offset adjustment factor	R/W	Default:0 Range: -32768 to 32767	Value est by Festery
I_THD_OFFSET (ITHDOffset)	118	Current THD offset adjustment factor	R/W	Default:0 Range: -32768 to 32767	Value set by Factory
V_LOAD_B_OFFSET (VLoadBOffset)	120	Load voltage offset phase B	R/W	Default:0 Range:0 to 0	EtherNet Only: Reserved Does not exist in Database
V_LINE_A_OFFSET (VLineAOffset)	121	Line voltage offset phase A	R/W	Default:2048 Range:0 to 4096	
V_LINE_B_OFFSET (VLineBOffset)	122	Line voltage offset phase B	R/W	Default:2048 Range:0 to 4096	
V_LINE_C_OFFSET (VLineCOffset)	123	Line voltage offset phase C	R/W	Default:2048 Range:0 to 4096	Value set by Factory
V_LOAD_A_OFFSET (VLoadAOffset)	124	Load voltage offset phase A R/W Default:2048 Range:0 to 4096			Value set by Factory
V_LOAD_C_OFFSET (VLoadCOffset)	125	Load voltage offset phase C	R/W	Default:2048 Range:0 to 4096	
V_TUNE_A_OFFSET (VTuneAOffset)	126	Tune voltage offset phase A	R/W	Default:2048 Range:0 to 4096	

V_TUNE_C_OFFSET (VTuneCOffset)	127	Tune voltage offset phase C	R/W	Default:2048 Range:0 to 4096	
V_DIFF_LINE_A_OFFSET (VRctrLineAOffset)	128	Reactor Diff Voltage Offset Phase A	R/W	Default:2048 Range:0 to 4096	
V_DIFF_LINE_B_OFFSET (VRctrLineBOffset)	129	Reactor Diff Voltage Offset Phase B	R/W	Default:2048 Range:0 to 4096	
V_DIFF_LINE_C_OFFSET (VRctrLineCOffset)	130	Reactor Diff Voltage Offset Phase C	R/W	Default:2048 Range:0 to 4096	
V_DIFF_TUNE_A_OFFSE T (VRctrTuneAOffset)	131	Reactor Diff Voltage Offset Phase A	R/W	Default:2048 Range:0 to 4096	
V_DIFF_TUNE_B_OFFSE T (VRctrTuneBOffset)	132	Reactor Diff Voltage Offset Phase B	R/W	Default:2048 Range:0 to 4096	
V_DIFF_TUNE_C_OFFSE T (VRctrTuneCOffset)	133	Reactor Diff Voltage Offset Phase C	R/W	Default:2048 Range:0 to 4096	
I_LINE_A_OFFSET (ILineAOffset)	134	Line Current Offset Phase A for CT Input	R/W	Default:2048 Range:0 to 8192	
I_LINE_C_OFFSET (ILineCOffset)	135	Line Current Offset Phase A for CT Input	R/W	Default:2048 Range:0 to 8192	
I_LOAD_A_OFFSET (ILoadAOffset)	136	Load Current Offset Phase A for CT input	R/W	Default:2048 Range:0 to 8192	Value eet by Festery
I_LOAD_C_OFFSET (ILoadCOffset)	137	Load Current Offset Phase A for CT input	R/W	Default:2048 Range:0 to 8192	Value set by Factory
T_AMBIENT_OFFSET (TCtrlOffset)	138	Offset for controls temperature	R/W	Default:683 Range: -8192 to 8192	
V_DIFF_LINE_A_SCALAR (VReactorLineScalarA)	139	Line reactor voltage scalar phase A	R/W	Default:16384 Range: -32768 to 32767	

Onset and Delay Register Map

The Onset and Delay Register map contains parameters used by the PQconnect board for fault and status detection logic. Onset is the level at which the fault/status detection activates changing the threshold can cause fault to occur earlier or later. Clear is the level at which the fault/status detection is deemed no longer present and allowing the filter to return to normal operation. Note that some parameters shown below may not exist in the parameter database/ or shown in PQVision. These parameters have been reserved for future use.

Note: All parameters with an asterisk (*) in the description will require the Tech level access codes parameter key A: 0x007D (125) and parameter key B: 0xEA6E (60014). All parameters are enabled for communication to EtherNet/IP unless explicitly stated otherwise in the Notes Column of the Table.

Table 56 : Onset and Delay Feedback and Setpoint Parameters Register Map

Parameter Name (EtherNet/IP Name)	Instance ID	Description	Туре	Default & Ranges	Notes
V_LINE_OV_ONSET (VLineOVOnset)	43	Overvoltage onset threshold, (percent rated voltage)	R/W	Default:130 Range:100 to 150	
V_LINE_OV_CLEAR (VLineOVClear)	44	Overvoltage clear threshold, (percent rated voltage)	R/W	Default:125 Range:90 to 140	
V_LINE_OV_DELAY (VLineOVDelay)	45	Overvoltage delay time, (sec)	R/W	Default:2 Range:1 to 3600	

V_LINE_UV_ONSET (VLineUVOnset)	46	Undervoltage phase loss onset threshold, (percent rated voltage)	R/W	Default:75 Range:50 to 90	
V_LINE_UV_CLEAR (VLineUVClear)	47	Undervoltage phase loss clear threshold, (percent R/W rated voltage)		Default:80 Range:60 to 100	
V_LINE_UV_DELAY (VLineUVDelay)	48	Undervoltage phase loss delay time, (sec)	R/W	Default:1 Range:1 to 3600	
I_LINE_OC_ONSET (ILineOCOnset)	49	Overcurrent onset threshold, (percent rated current)	R/W	Default:150 Range:100 to 200	
I_LINE_OC_CLEAR (ILineOCClear)	50	Overcurrent clear threshold, (percent rated current)	R/W	Default:140 Range:90 to 190	
I_LINE_OC_DELAY (ILineOCDelay)	51	Overcurrent delay time, (sec)	R/W	Default:5 Range:1 to 3600	
I_LOAD_BALANCE_ONSET (ILoadBalanceOnset)	52	Load current balance onset threshold, (percent rated current)	R/W	Default:75 Range:10 to 90	
I_LOAD_BALANCE_CLEAR (ILoadBalanceClear)	53	Load current balance clear threshold, (percent rated current)	R/W	Default:80 Range:10 to 90	
I_LOAD_BALANCE_DELAY (ILoadBalanceDelay)	54	Load current balance delay time, (sec)	R/W	Default:4 Range:1 to 3600	
I_LOAD_BALANCE_MIN_CURREN T (ILoadBalanceMin)	55	Load current balance minimum detect current, (percent rated current)	R/W	Default:50 Range:10 to 100	
I_TUNE_OC_ONSET (ITuneOCOnset)	56	Tune overcurrent onset threshold, (Percent rated current)	R/W	Default:150 Range:100 to 200	
I_TUNE_OC_CLEAR (ITuneOCClear)	57	Tune overcurrent clear threshold, (Percent rated current)	R/W	Default:140 Range:90 to 190	
I_TUNE_OC_DELAY (ITuneOCDelay)	58	Tune overcurrent delay time, (sec)	R/W	Default:4 Range:1 to 3600	
I_TUNE_UC_ONSET (ITuneUCOnset)	59	Tune circuit fundamental undercurrent onset threshold , (percent rated current)	R/W	Default:65 Range:10 to 100	
I_TUNE_UC_CLEAR (ITuneUCClear)	60	Tune circuit fundamental undercurrent clear threshold, (percent rated current)	R/W	Default:70 Range:15 to 100	
I_TUNE_UC_DELAY (ITuneUCDleay)	61	Tune circuit fundamental undercurrent delay time, (sec)	R/W	Default:3 Range:1 to 3600	
I_TUNE_BALANCE_ONSET (ITuneBalanceOnset)	62	Tune circuit current balance onset threshold, (percent rated current)	R/W	Default:75 Range:10 to 90	
I_TUNE_BALANCE_CLEAR (ITuneBalanceClear)	63	Tune circuit current balance clear threshold , (percent rated current)	R/W	Default:80 Range:10 to 90	
I_TUNE_BALANCE_DELAY (ITuneBalanceDelay)	64	Tune circuit current balance delay time , (sec)	R/W	Default:2 Range:1 to 3600	
T_AMBIENT_OT_ONSET (TCtrIOTOnset)	65	Controls overtemperature onset threshold, (10 = 1.0 deg C)	R/W	Default:700 Range:100 to 850	
T_AMBIENT_OT_CLEAR (TCtrlOTClear)	66	Controls overtemperature clear threshold , (10 = 1.0 deg C)	R/W	Default:600 Range:50 to 800	
T_AMBIENT_OT_DELAY (TCtrlOTDelay)	67	Controls overtemperature delay time, (sec)	R/W	Default:5 Range:1 to 3600	

STATUS_T_AMBIENT_UT_ONSET (TCtrlUTOnset)	68	Controls under temperature onset threshold, (10 = 1.0 deg C)	R/W	Default:0 Range:0 to 0	EtherNet Only:
STATUS_T_AMBIENT_UT_CLEAR (TCtrlUTClear)	TUS_T_AMBIENT_UT_CLEAR		R/W	Default:0 Range:0 to 0	Reserved Does not exist in Database
STATUS_T_AMBIENT_UT_DELAY (TCtrlUTDelay)	70	Controls under temperature delay time, (10 = 1.0 deg C)	R/W	Default:0 Range:0 to 0	Database

Tech Access Register Map

The Tech Access Register map contains parameters used by developers for testing the PQconnect board and filter or left for future implementation and is only usable for TCI, LLC.

Note: All parameters with an asterisk (*) in the description will require the Tech level access codes parameter key A: 0x007D (125) and parameter key B: 0xEA6E (60014). All parameters are enabled for communication to EtherNet/IP unless explicitly stated otherwise in the Notes Column of the Table.

Table 57 : Tech Access Feedback and Setpoint Parameters Register Map

Parameter Name (EtherNet/IP Name)	Instance ID	Description	Туре	Default & Ranges	Notes
SYS_PEEK_0 (DiagVal0)	304	Diagnostic peek value 0	R	Default:0	A diagnostic Feedback variable
SYS_PEEK_1 (DiagVal1)	305	Diagnostic peek value 1	R	Default:0	used by Production and Engineering for Testing and Field Support.
SYS_PEEK_2 (DiagVal2)	306	Diagnostic peek value 2	R	Default:0	
SYS_PEEK_3 (DiagVal3)	307	Diagnostic peek value 3	R	Default:0	
TEST_VOLTAGE (TestVoltage)	13	Unit test voltage, (10 = 1.0 Volts)	R/W	Default:0 Range:0 to 6900	Factory Used Parameter. Used to check if Filter was configured with the correct test Voltage.
TEST_FREQUENCY (TestFreq)	14	Unit test frequency, (Hz)	R/W	Default:0 Range:0 to 60	Factory Used Parameter. Used to check if Filter was configured with the correct test frequency.
SYS_POKE_0 (Poke0)	166	Diagnostic poke variable 0	R/W	Default:0 Range:-32768 to 32767	
SYS_POKE_1 (Poke1)	167	Diagnostic poke variable 1	R/W	Default:0 Range:-32768 to 32767	
SYS_POKE_2 (Poke2)	168	Diagnostic poke variable 2	R/W	Default:0 Range:-32768 to 32767	
SYS_POKE_3 (Poke3)	169	Diagnostic poke variable 3	R/W	Default:0 Range:-32768 to 32767	
SYS_PEEK_ADDR_0 (PeekAddr0)	170	Diagnostic peek address 0	R/W	Default:0 Range:0 to 65535	
SYS_PEEK_ADDR_1 (PeekAddr1)	171	Diagnostic peek address 1	R/W	Default:0 Range:0 to 65535	
SYS_PEEK_ADDR_2 (PeekAddr2)	172	Diagnostic peek address 2	R/W	Default:0 Range:0 to 65535	
SYS_PEEK_ADDR_3 (PeekAddr3)	173	Diagnostic peek address 3	R/W	Default:0 Range:0 to 65535	

5.0 PQconnect Connectivity

					Ethernet Enabled but Mapped
BGM_PASSKEY_A_EIP (DiagFb1)	313	Diagnostic Feedback Parameter 1	R	Default:0	to Modbus Instance: BGM_PASSKEY_A Read only Value of BGM Password - High Bytes
BGM_PASSKEY_B_EI (DiagFb2)	314	Diagnostic Feedback Parameter 2	R	Default:0	"Ethernet Enabled but Mapped to Modbus Instance: BGM_PASSKEY_B Read only Value of BGM Password - Low Bytes
DIAGONSTIC_FEEDBACK_3 (DiagFb3)	315	Diagnostic Feedback Parameter 3	R	Default:0	EtherNet Only: Reserved Does not exist in Database.
DIAGONSTIC_FEEDBACK_4 (DiagFb4)	316	Diagnostic Feedback Parameter 4	R	Default:0	
SYS_COM_ACTIVE (DiagFb5)	317	Diagnostic Feedback Parameter 5	R	Default:0	System Communication Status, bit 0 = Modbus RTU active, bit 1 = Bluetooth active, bit 2 = EtherNet/IP active
SYS_CNT_MIN_OFF_TIMER_EIP (DiagFb6)	318	Diagnostic Feedback Parameter 6	R	Default:0	Ethernet Enabled but Mapped to Modbus Instance: SYS_CNT_MIN_OFF_TIMER Displays count down time for contactor re-closures. Once this timer expires contactor will change the contactor state to close. Default: 60 seconds Range: 30 to 300 seconds
PARAM_ACCESS_LEVEL_EIP (DiagFb7)	319	Diagnostic Feedback Parameter 7	R	Default:0	Ethernet Enabled but Mapped to Modbus Instance: PARAM_ACCESS_LEVEL_RO Determines the Level of parameter access to read and/or change parameter inputs. 0 = Base access 1 = Tech access 2 = Factory access
DIAGONSTIC_FEEDBACK_9 (DiagFb9)	320	Diagnostic Feedback Parameter 7	R	Default:0	
DIAGONSTIC_FEEDBACK_10 (DiagFb10)	321	Diagnostic Feedback Parameter 10	R	Default:0	
DIAGONSTIC_FEEDBACK_11 (DiagFb11)	322	Diagnostic Feedback Parameter 10	R	Default:0	
DIAGONSTIC_FEEDBACK_12 (DiagFb12)	323	Diagnostic Feedback Parameter 12	R	Default:0	EtherNet Only: Reserved Does not exist in Database
DIAGONSTIC_FEEDBACK_13 (DiagFb13)	324	Diagnostic Feedback Parameter 13	R	Default:0	
DIAGONSTIC_FEEDBACK_14 (DiagFb14)	325	Diagnostic Feedback Parameter 14	R	Default:0	
DIAGONSTIC_FEEDBACK_15 (DiagFb15)	326	Diagnostic Feedback Parameter 15	R	Default:0	

	_	Diamastis			
DIAGONSTIC_FEEDBACK_16 (DiagFb16)	327	Diagnostic Feedback Parameter 16	R	Default:0	
DIAGONSTIC_FEEDBACK_8 (DiagFb8)	328	Diagnostic Feedback Parameter 8	R	Default:0	
DIAG_SETPOINT_1 (DiagSP1)	190	Diagnostic Setpoint Parameter 1	R/W	Default:0 Range:0 to 0	
DIAG_SETPOINT_2 (DiagSP2)	191	Diagnostic Setpoint Parameter 2	R/W	Default:0 Range:0 to 0	
DIAG_SETPOINT_3 (DiagSP3)	192	Diagnostic Setpoint Parameter 3	R/W	Default:0 Range:0 to 0	
DIAG_SETPOINT_4 (DiagSP4)	193	Diagnostic Setpoint Parameter 4	R/W	Default:0 Range:0 to 0	EtherNet Only: Reserved Does not exist in Database.
DIAG_SETPOINT_5 (DiagSP5)	194	Diagnostic Setpoint Parameter 5	R/W	Default:0 Range:0 to 0	
DIAG_SETPOINT_6 (DiagSP6)	195	Diagnostic Setpoint Parameter 6	R/W	Default:0 Range:0 to 0	
DIAG_SETPOINT_7 (DiagSP7)	196	Diagnostic Setpoint Parameter 7	R/W	Default:0 Range:0 to 0	
DIAG_SETPOINT_8 (PROC_DATA_CMD_EN)	197	Diagnostic Setpoint Parameter 8	R/W	Default:0 Range:0 to 1	Enables and Disables Implicit Setpoint Writes. Only used for Passive Filters with EtherNet/IP Connectivity. 0 = Implicit IO Writes Disabled 1 = Implicit IO Writes Enabled
DIAG_SETPOINT_9 (DiagSP9)	198	Diagnostic Setpoint Parameter 9	R/W	Default:0 Range:0 to 0	
DIAG_SETPOINT_10 (DiagSP10)	199	Diagnostic Setpoint Parameter 10	R/W	Default:0 Range:0 to 0	
DIAG_SETPOINT_11 (DiagSP11)	200	Diagnostic Setpoint Parameter 11	R/W	Default:0 Range:0 to 0	
DIAG_SETPOINT_12 (DiagSP12)	201	Diagnostic Setpoint Parameter 12	R/W	Default:0 Range:0 to 0	
DIAG_SETPOINT_13 (DiagSP13)	202	Diagnostic Setpoint Parameter 13	R/W	Default:0 Range:0 to 0	EtherNet Only: Reserved Does not exist in Database.
DIAG_SETPOINT_14 (DiagSP14)	203	Diagnostic Setpoint Parameter 14	R/W	Default:0 Range:0 to 0	
DIAG_SETPOINT_15 (DiagSP15)	204	Diagnostic Setpoint Parameter 15	R/W	Default:0 Range:0 to 0	
DIAG_SETPOINT_16 (DiagSP16)	205	Diagnostic Setpoint Parameter 16	R/W	Default:0 Range:0 to 0	

V_OUT_FUND_HZ (FFund)	270	Load output voltage fundamental frequency, (Hz)	R	Default:0	
V_IN_CARRIER_HZ (FCarrier)	271	Estimated input voltage carrier frequency, (Hz)	R	Default:0	
FUND_TRACKING_MODE (FundFreqTrackMode)	111	Fundamental frequency tracking mode	R/W	Default:0 Range:0 to 0	
FUND_TRACKING_FILTER _GAIN (FundFreqFiltGain)	112	Fundamental frequency reference filter gain	R/W	Default:0 Range:0 to 0	

Read Only Register Map

Note that some parameters shown below may not exist in the parameter database/ or shown in PQVision. These parameters have been reserved for future use.

Note: All parameters with an asterisk (*) in the description will require the Tech level access codes parameter key A: 0x007D (125) and parameter key B: 0xEA6E (60014). All parameters are enabled for communication to EtherNet/IP unless explicitly stated otherwise in the Notes Column of the Table.

Table 58 : Read Only Feedback and Setpoint Parameters Register Map

Parameter Name (EtherNet/IP Name)	Instance ID	Description	Туре	Default & Ranges	Notes
DSP_MODEL_NUM_RO (DSPModelNum)	208	Digital Signal Processor DSP model number	R		System Model Numbers 0 = Undefined 3 = Sim 101 = HSD 102 = HGL 103 = HGP 104 = HSL 105 = HSE 200 = KIT - BLANK 202 = KIT - HGL 203 = KIT - HGP 205 = KIT - HSE
HMS_MODEL_NUM_RO (FBModelNum)	210	Fieldbus communications processor model number	R	Default:0	Ethernet Hardware Version Number Notifies the user what type of Module is connected.
BGM_MODEL_NUM_RO (WLModelNum)	212	Wireless communications firmware model number	R	Default:0	Module Revision Code for Bluetooth Processor 0 = Null 1 = BGM111 2 = BGM210 3 = BGM220

Assembly Objects

All assembly objects used for EtherNet/IP are of a connection type CLASS 1 for a CIP generic Message type. Class 1 connection refers to an implicit IO connection where a scanner device makes a connection with an adapter device and requests an implicit I/O connection. The maximum request packet interval (RPI) is 10Hz (100ms).

Consuming Assembly Data

Consuming Assembly Data or also known as Output Assembly data is data moving from the scanner to the device which allows the PQconnect to write data. The instance ID is **150 (0x96)** with a size of 18 bytes, 2 bytes per parameter.

Bytes	Parameter Name	Index	Info	Data Type
0-1	ParamCmd	1	0 = NoCmd, 1 = Idle, 9 = Save, 21 = SetBasicAccess, 25 = SetTechAccess, 30 = SetFctryAccess, 42 = Reboot, 150 = Load, 200 = LoadNonCalDef, 255 = FctryDef, 300 = LoadUnitCalDef	
2-3	WaveformTrigCmd	2	0 = NoTrig, 1 = Trig	
4-5	ResetCmd	3	0 = NoRst, 1 = Rst	Signed 16–bit integer value
6-7	ParamKeyA	4		3
8-9	ParamKeyB	5		
10-11	ControlMode	8	0 = ForceOpen, 1 = ForceClose, 2 = AutoLoad, 3 = AutoPF, 4 = ExtInput, 5 = NoCnt	
12-13	AutoCloseEn	9		
14-15	DiagSP5	194]
16-17	DiagSP6	195		

Table 59 : Consuming Assembly Data

Producing Assembly Data

Producing Assembly Data or also known as Input Assembly data is data moving towards the scanner which allows the PQconnect to read data. The instance ID for this Producing Data is **100** (0x64) with a size of 180 bytes, 2 bytes per parameter.

Bytes	ducing Assembly Data Parameter Name	Index	Info	Data Type
0-1	GridVoltage	215		
2-3	GridFrequency	216		
20	Charlequency	210	0 = Auto,	
4-5	GridRotation	217	1 = ABC,	
			2 = AC	
6-7	GridSyncLocked	218		
8-9	VLineABRMS	219		Signed 16-bit
10-11	VLineBCRMS	220		integer value.
12-13	VLineCARMS	221		
14-15	VLineABTHD	222		
16-17	VLineBCTHD	223		
17-19	VLineCATHD	224		
20-21	ILineARMS	225		
22-23	ILineBRMS	226		
24-25	ILIneCRMS	227		
26-27	ILineATHD	228		
28-29	ILineBTHD	229		
30-31	ILineCTHD	230		
32-33	ILineATDD	231		
34-35	ILineBTDD	232		
36-37	ILineCTDD	233		
38-39	VLoadABRMS	234		
40-41	VLoadBCRMS	235		Cigned 10 hit
42-43	VLoadCARMS	236		Signed 16–bit integer value.
44-45	VLoadABTHD	237		integer value.
46-47	VLoadBCTHD	238		
48-49	VLoadCATHD	239		
50-51	ILoadARMS	240		
52-53	ILoadBRMS	241		
54-55	ILoadCRMS	242		
56-57	ILoadATHD	243		
58-59	ILoadBTHD	244		
60-61	ILoadCTHD	245		
62-63	VTuneABRMS	246		
64-65	VTuneBCRMS	247		
66-67	VTuneCARMS	248		
68-69	VTuneABTHD	249		
70-71	VTuneBCTHD	250		
72-73	VTuneCATHD	251		
74-75	ITuneARMS	252		Signed 16-bit
76-77	ITuneBRMS	253		integer value
78-79	ITuneCRMS	254		
80-81	ITuneATHD	255		
82-83	ITuneBTHD	256		
84-85	ITuneCTHD	257		
86-87	SLine	258		
88-89	PLine	259		

Table 60 : Producing Assembly Data

90-91	QLine	260	1	
92-93	PFLine	261		
94-95	SLoad	262		
96-97	PLoad	263		
98-99	QLoad	264		
100-101	PFLoad	265		
102-103	PLoadAlt	266		
104-105	VLoadABRatio	267		
106-107	VLoadBCRatio	268		
108-109	VLoadCARatio	269		
110-112	FFund	270		
112-113	FCarrier	271		
114-115	CntClosed	272		
116-117	PowerOn	273		
118-119	StatusOK	274		
120-121	AtCapacity	275		
122-123	TControl	276		
124-125	CapWrn	278		
126-127	FilterStatusActiveA	279		Signed 16–bit
128-129	FilterStatusActiveB	280		integer value.
130-131	LineStatusActive	281		
132-133	LoadStatusActive	282		
134-135	ParamState	287		
136-137	SysState	288		
138-139	CntStatus	289		
140-141	RelayInputStatus	290		
142-143	DSMode	291		
144-145	WLStatus	293	0 = idle, 1 = advertising, 2 = connected	
146-147	IntHeartbeat	298		
148-149	BGHeartbeat	299		
150-151	DiagFb5	317		
152-153	DiagFb6	318		
154-155	DiagFb7	319		
156-157	DiagFb9	320		
158-159	DiagFb10	321		
160-161	DiagFb11	322		Signed 16-bit
162-163	DiagFb12	323		integer value.
164-165	DiagFb13	324		
166-167	DiagFb14	325		
168-169	DiagFb15	326		
170-171	DiagFb16	327		
172-173	DiagFb8	328		
174-175	RatedCurrent	10		
176-177	RatedVoltage	11		
178-179	RatedFreq	12		

Waveform Data

The waveform data displayed by the PQconnect is available over EtherNet/IP using the ADI object class with the code **0xA2** to access data. Refer to Reading and writing to PQconnect Waveform Arrays for more information.

Array Name	Instance	Size	Data Type
TraceA	329		Signed 16 bit
TraceB	330	128	Signed 16–bit integer value.
TraceC	331		integer value.
VLineABPlot	332		Cigned 16 hit
VLineBCPlot	333	192	Signed 16–bit integer value.
VLineCAPlot	334		integer value.
ILineAPlot	335		Signed 16–bit
ILineBPlot	336	192	integer value.
ILineCPlot	337		integer value.
VLoadABPlot	338		Signed 16–bit
VLoadBCPlot	339	192	integer value.
VLoadCAPlot	340		integer value.
ILoadAPlot	341		Signed 16 bit
ILoadBPlot	342	192	Signed 16–bit integer value
ILoadCPlot	343		integer value
DiagAPlot	344		Signed 16 bit
DiagBPlot	345	192	Signed 16–bit integer value.
DiagCPlot	346		integer value.
VLineABSpectrum	347		Signed 16 bit
VLineBCSpectrum	348	50	Signed 16–bit integer value.
VLineCASpectrum	349		integer value.
ILineASpectrum	350		Signed 16 bit
ILineBSpectrum	351	50	Signed 16–bit integer value.
ILineCSpectrum	352		integer value.
VLoadABSpectrum	353		Signed 16 bit
VLoadBCSpectrum	354	50	Signed 16–bit integer value.
VLoadCASpectrum	355		
ILoadASpectrum	356		Signed 16–bit
ILoadBSpectrum	357	50	integer value.
ILoadCSpectrum	358		
HistoryLogRecord	359	8	Signed 16-bit
DiagLogRecord	360	128	integer value.

Table 61 : Waveform Data

6.0 PQconnect Troubleshooting

HarmonicGuard/HarmonicShield Passive Filter Status Warning

If the desktop interface indicates a status warning, hover over the status detection for a brief description. Depending on the condition there are multiple ways to try and clear the status warnings.

Warning Only qualified electricians should carry out all electrical installation & maintenance work at the Harmonic Filter.

U Disconnect all sources of power to the and connected equipment before working on the equipment. Do not attempt any work on a powered filter.

All HarmonicGuard/HarmonicShield units contain high voltages and capacitors. Wait at least five minutes after disconnecting the power from the filter before attempting to service the conditioner. Check for zero voltage between all terminals on the capacitors. Also, check for zero voltage between all phases of the input and output lines. All maintenance and troubleshooting must be done by a qualified electrician. Failure to follow standard safety procedures may result in death or serious injury. Unless an external disconnect means has been provided everything ahead of the filter circuit breaker, including the reactors, will still be energized.

Receiving Inspection

The connectivity board has been thoroughly inspected and functionally tested at the factory and carefully packaged for shipment. After receiving the unit, immediately inspect the shipping container and report any damage to the carrier that delivered the unit. Verify that the part number of the unit received is the same as the part number listed on the purchase order.

Connectivity Board Problem

The HarmonicGuard/HarmonicShield Filter is comprised of five major components: the PQconnect connectivity board, the line reactor, the tuning reactor, the contactor, and the capacitors. The PQconnect PCB contains diagnostic LEDs.

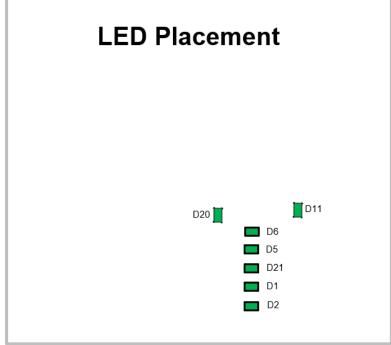


Figure 76: PQconnect LED Placements

LED	LED Color	Description
D1	Green	Tuned circuit contactor control 1
D2	Green	Optional 2 nd Status LED/ tuned circuit contactor control 2
D5	Green	Status LED
D6	Green	Microprocessor Status LED
D11	Green	RS485 Communication is active
D20	Green	24V LED
D21	Green	5V LED

Table 62: LED Functions

Note: Status LED's will blink according to the filter status. The microprocessor status LED will blink 1hz if the filter is okay, however if there has been an alert the LED will blink according to the status detection. It will initially start with a slow blink (2 = filter lower, 3 = filter upper, 4 = filter input, 5 = filter load) then blink fast depending on the status code.

The table below shows the specified blinks for each status condition.

Status Condition	Group (Slow blinks)	
Tune Phase A Loss		1
Tune Phase B Loss		2
Overvoltage Phase C		3
Tune Balance Loss Phase A		4
Tune Balance Loss Phase B		5
Tune Balance Loss Phase C		6
Tune Undercurrent Phase A		7
Tune Undercurrent Phase B		8
Tune Undercurrent Phase C	2	9
Tune Overcurrent Phase A		10
Tune Overcurrent Phase B		11
Tune Overcurrent Phase C		12
Under Temperature		13
Over Temperature		14
CPU Error		15
Tune Reactor Thermal		16
Reclose Limit	3	1
Line Reactor Thermal	3	4
Filter Line Phase A Loss		1
Filter Line Phase B Loss		2
Filter Line Phase C Loss		3
Filter Line Overvoltage Phase A		4
Filter Line Overvoltage Phase B	4	5
Filter Line Overvoltage Phase C		6
Filter Line Frequency Mismatch		7
Filter Line High THVD		8
Filter Line Phase Rotation		9
Filter Load Phase A imbalance		1
Filter Load Phase B imbalance		2
Filter Load Phase C imbalance	5	3
Filter Load Phase A Overcurrent	5	4
Filter Load Phase B Overcurrent		5
Filter Load Phase C Overcurrent		6

Table 63: Specified Blinks for Each Status Condition

Communication Problems

- J5 Communication Header
 - \circ With the power de-energized from the filter, check wiring leading to J5 header
 - If the user is using a different RS485 converter than the example above, please follow the datasheet for the A & B signals and ground for proper setup
- Ensure the drivers of the RS485 to USB converter is installed to the computer. Simple way of checking while the RS485 converter connected is to go to the device manager and scroll down to ports. There will be a device connected to the ports. If your device is not listed, the user will need to install the correct drivers of the RS485 converter.

📠 Device Manager	-	
File Action View Help		
⊨ → ☶ 🔛 🔢 🗊 💯		
✓ 摄 MIS2172		
> 🖬 Audio inputs and outputs		
> 🙀 Batteries		
> 🐻 Biometric devices		
> 🚯 Bluetooth		
> 🛄 Computer		
> 👝 Disk drives		
> 🔙 Display adapters		
> 🎽 Firmware		
> 🙀 Human Interface Devices		
> 🝙 Imaging devices		
> 🥅 Keyboards		
> III Mice and other pointing devices	-	
> 🛄 Monitors		
> 🚽 Network adapters		
V 🛱 Ports (COM & LPT)		
🛱 RS-485 Port (COM5)		
> 📇 Print queues		
> Processors		
> IP Security devices		
> 🔚 Sensors		
Software devices		
> 🐗 Sound, video and game controllers		
> 🍇 Storage controllers		
> 🏣 System devices		
> Ü Universal Serial Bus controllers		

PQvision App Load Defaults

- With the RS485 Converter connected to the circuit board
- Energize Filter
- Open PQvision desktop interface
- Go to Settings
- Select Load Defaults
- Select Apply
- Default Modbus settings should be applied. Try connecting to the COM port
 - If this doesn't work de-energize power to the filter
- and try flipping the A and B signal wires leading to the J5 header of the circuit board. Hard Reset Modbus settings (Worst Case)
- To perform a hard reset of Modbus settings the user will need to remove jumper J20 with the power de-energized from the filter. Once the jumper is removed connect the RS485 converter to J5 header and energize filter.
- Open PQvision
- o Confirm there is a COM port under Communication and try to connect
 - Note if connecting to the COM port does not work, try flipping the A and B signal wires leading to the J5 header of the circuit board
- Load defaults and apply
- Save settings and de-energize filter
- Connect jumper to J20
- Energize filter
- Try connecting to PCB
 - All Modbus settings should be set to default settings at this point
 - If the board doesn't connect after trying hard reset contact TCI Tech-Support

App	Device			
		Ν	lew (Current
Slave	Address:	0	•	10
Baud Rate:			~	115200
Parity:			~	Even
Apply				Load efaults

Debug Status Conditions

Based on the status condition there are various ways a status can appear. Some status conditions are not critical and are used as warnings. Before investigating the filter internally, disengage supply voltage to the filter. If problems persist after initial checks, please contact TCI Tech-Support.

Table 64 : Status Conditions

Status Condition	Description	Debug/ Resolution
Filter Tune Phase Loss A, B, or C	Phase loss in one of the phases of the filter tune circuit	Check fuses of the tune circuit Check power connections of the tune circuit Check voltage sense wires leading to the board and reactor, make sure they are properly connected
Filter Tune balance Loss Phase A, B, or C	Filter tune imbalance on one of the phases.	Check power connections of the tune circuit Check voltage sense wires leading to the board and reactor, make sure they are properly connected
Filter Tune Undercurrent Phase A, B, or C	Filter tune current is seeing less current than expected	Make sure you have the right size filter selected for the application. Based on the model number the filter will expect a certain amount of current in the tune circuit. Check voltage sense wires leading to the board and reactor, make sure they are properly connected
Filter Tune Overcurrent Phase A, B, or C	Filter tune current is seeing more current than expected	Make sure you have the right size filter selected for the application. Based on the model number the filter will expect a certain amount of current in the tune circuit. Check voltage sense wires leading to the board and reactor, make sure they are properly connected
Under Temperature	Filter ambient temperature is operating below threshold (-40C)	Check fuses of control power transformers leading to the heater.
Over Temperature	Filter ambient temperature is operating above threshold (+75C)	Check fuses of control power transformers leading to fans. Make sure fans are operating
CPU Error	Processor Malfunction	Power cycle unit and if issue persists upgrade firmware and/or contact tech support
Reactor Thermal Switch	Reactor Thermal Switch is open	Check thermal switch connections to PCB and check if thermal switch is damaged
Reclose Limit	Contactor Reclose is at its limit	The contactor will close for many reasons if you are experiencing any issues with the contactor view Table 62: Contactor Codes for further details.
Filter Line Phase Loss A, B, or C	Filter line phase loss	Check fused disconnect or circuit breaker upstream of the filter. Check input power connections to the filter
Filter Line Overvoltage Phase A, B, or C	Filter overvoltage on one of the phases.	Check input power connections to filter Check voltage setpoint, based on the filter model number entered the filter is expecting a certain input voltage.
Filter Frequency Mismatch	Line Frequency does not match program setpoint	During the user calibration the filter frequency is set based on the model number entered. Verify the frequency
Filter Line High THVD	High voltage Total Harmonic Distortion	Check fuses leading to filter capacitors If fuses are not blown, measure Capacitance of the capacitors Check power connections of the unit
Filter Line Rotation	Filter phase rotation	Phase rotation differs from default setting. Status condition can be turned off or switched to ACB
Filter Load Phase Imbalance A, B, or C	Phase imbalance between the phases	Check power connections of the line side of the filter Check voltage sense wires leading to the board and reactor, make sure they are properly connected
Filter load Overcurrent Phase A, B, or C	Filter output current is more than expected	Make sure you have the right size filter selected for the application. Based on the model number the filter will expect a certain amount of current in the tune circuit. Check voltage sense wires leading to the board and reactor, make sure they are properly connected

Contactor Problem

Parameter 257 Contactor Status can be used to determine why the PQconnect board is not closing the tuned circuit contactor. The following tables define what a specific contactor status code value means and list potential resolutions to allow the contactor to close.

Note that some setpoint parameters require tech level parameter access to be viewable over the serial connection or via the PQvision software. The tech level parameter access key is available above.

Description Resolution Code The PQconnect is presently commanding the tuned circuit contactor to be closed. If Contactor is already 1 the contactor is not closing check the wiring from the PCB J11 control relay header commanded closed. to the tuned circuit contactor and 120VAC control power transformer. Contactor is open due to The present contactor control mode (feedback parameter 250) is set to Force 2 a Force Open control Open. This control mode will always keep the contactor open. To change the mode. control mode, see setpoint parameter 510. The present contactor control mode (feedback parameter 250) is set to Automatic Contactor is open due to Load Control and the measured filter load Amps are below the configured close an automatic load control threshold (feedback parameter 270). The contactor will be closed when the filter 3 mode and insufficient load Amps exceed the close threshold. The contactor close filter load current load Amps to close the threshold can be adjusted via setpoint parameter 570. The contactor close contactor. threshold parameter is scaled in units of percent rated nameplate filter current. The present contactor control mode (feedback parameter 250) is set to Automatic kVAR Control and closing the contactor would exceed the max allowable kVAR Contactor is open due to flowing to the source to be exceeded (feedback parameter 272). The contactor will an automatic kVAR 4 be closed when the inductive load kVAR minus the capacitive tuned circuit kVAR of control mode. the passive filter is below the max kVAR setpoint parameter. The max kVAR setpoint parameter can be adjusted via setpoint 572. The present contactor control mode (feedback parameter 250) is set to External Control and the external command is set to open the contactor. The external contactor control command is wired to the PQconnect PCB header J7 where shorting pins 1 and 2 of that header equal a close command. Contactor is open due to The internal state of the external control command can be audited via feedback 5 an external contactor parameter 320 in bit position 0. If an external contactor close command is correctly open command. being input to the PQ connect board then confirm the J7 header input is configured as the external control command by verifying feedback parameter 321 is set to a value of 2=external command input. If the input configuration parameter 321 is not set to 2=external command input the input configuration can be changed via setpoint parameter 610. The present contactor control mode (feedback parameter 250) is set to No Contactor is open Contactor Mode. No Contactor mode is typically reserved for HGP units that do not because the PQconnect include a tuned circuit control contactor. If your HGP unit does include a tuned 6 has been configured circuit contactor but the PQconnect is configured to not support a contactor, please without a contactor.

call TCI technical support.

Table 65: Contactor Codes

Table 66 : Contactor Codes

Code	Description	Resolution		
Code	Description	The contactor is open due to a filter, filter line, or filter load status detection being detected that		
7	Contactor is open due status detection.	The presently configured contactor open actions can be audited using feedback parameters 240-Filter A, 241-Filter B 242-Filter Line and 243 Filter Load. The set or clear status of these contactor open status detections and wither they are configured to open the tuned circuit contactor when detected as a self-protection feature.		
		To reset all status conditions and attempt to re-close the contactor the unit can be power cycled, a serial command can be sent over the network interface via setpoint parameter 502, or an external wired reset command can be input to the PQconnect PCB at header J8 where shorting pins 1 and 2 of that header equal a close command. The internal state of the external wired reset command is correctly being input to the PQconnect board then confirm the J8 header input is configured as the external reset command by verifying feedback parameter 322 is set to a value of 1=external reset command input. If the input configuration parameter 322 is not set to 1=external reset command input the input configuration can be changed via setpoint parameter 611.		
8	Contactor is open due to a parameter inhibit condition.	The contactor is open because the PQconnect is still loading stored parameters in flash memory. This condition should clear shortly after the unit is powered up. If this contactor status condition persists power cycle the unit and call TCI technical support if the condition does not clear.		
9	Contactor is open due to a unit power on delay.	The contactor is open because the PQconnect is waiting for the configured power on delay time to expire. The power on delay time in units of seconds can be viewed via feedback parameter 281. The power on delay time can be adjusted via setpoint parameter 581.		
10	Contactor is open due to a calibration inhibit.	The contactor is open because the unit is presently undergoing an internal calibration procedure, or no calibration data has been stored to the unit's flash memory. If this contactor status condition persists power cycle the unit and call TCI technical support if the condition does not clear.		
11	Contactor is being held open due to the minimum reclose timer.	An internal contactor close event is pending but the contactor is being held open because it was recently closed, and the minimum reclose time has not been yet achieved. The minimum contactor re-close time in units of seconds is viewable via feedback parameter 285. This time out period allows any residual stored charge in the tune circuit capacitors to be dissipated by bleeder resistors before the tune circuit is re-energized. If a minimum time is not enforced between repeated contactor close events the contactor may re-close and apply line voltage out of phase with the residual voltage on the tuned circuit capacitors. This could cause high currents to flow through the tuned circuit contactor and potentially blow the contactor protective fuses. The remaining time on the minimum contactor re-close timer can be viewed on feedback parameter 286.		
12	Contactor is being held open due to close delay timer.	An internal contactor close event is pending but the contactor is being held open because the configured contactor close delay time out period has not yet been achieved. The automatic contactor control modes (load current control and line kVAR control) are configured with contactor close and open delay timers to avoid changing the contactor state due to short transient conditions. The presently configured contactor close delay time in units of seconds is viewable via feedback parameter 274. The contactor close delay time can be adjusted via setpoint parameter 574		
13	Contactor is being held open due to the auto reclose delay	An internal contactor automatic reclose event is pending but the contactor is being held open because the configured automatic re-close time has not been achieved yet. The PQconnect continuously monitors the internal conditions of the HGP passive filter and the external conditions of the filter line and load currents and voltages. Some status conditions are configured to open the tuned circuit contactor when detected as a self-protection feature. An optional feature can be enabled (feedback parameter 252) to attempt to re-close the tuned circuit contactor after a status condition has been detected. The auto reclose enable setpoint parameter is parameter 511 and the auto reclose delay time setpoint parameter is parameter 580.		

Table 67 : Contactor Codes

Code	Description Resolution			
14	Contactor is being held open due to auto reclose limit being reached.	An internal contactor automatic reclose event is pending but the contactor is being held open because the number of re-close attempts in a set time has been exceeded. The PQconnect continuously monitors the internal conditions of the HGP passive filter and the external conditions of the filter line and load currents and voltages. Some status conditions are configured to open the tuned circuit contactor when detected as a self-protection feature. An optional feature can be enabled (feedback parameter 252) to attempt to re-close the tuned circuit contactor after a status condition has been detected. However, if too many re-close attempts (parameter 282) are made within a set time (parameter 283) the unit will stop attempting to auto reclose. To debug which status conditions caused the contactor open event the presently configured contactor open actions can be audited using feedback parameters 240-Filter A, 241-Filter B 242-Filter Line and 243 Filter Load. The set or clear status of these contactor open status detections can be viewed via feedback parameters 210-Filter A, 211-Filter B 212-Filter Line and 213 Filter Load. Also, the present value of all status detections and wither they are configured to open the tune circuit contactor when detected can be viewed via the PQvision software settings menu screen. When the auto re-close limit has been reached a power cycle of the passive filter unit is required to clear the condition and allow the contactor to re-close.		

Volta destr	y electronic components located within the filter are sensitive to static electricity. ages imperceptible to human touch can reduce the life, affect performance and/or roy sensitive electronic devices. Use proper electrostatic discharge (ESD) edures when servicing the filter and its circuit boards.
----------------	--

EtherNet/IP Problem

Any Connection, Configuration, and status information can be shown on PQvision dedicated Ethernet setting page. All data is updated in real-time with Ethernet LED status corresponding to B40 Module LEDS located on the PQconnect board. LED status codes are all labeled on the table below.

That Settings					_	\times
Contactor Control Relay	and Status Mode	ous Bluetooth	Ethernet			
Ethernet						
Configuration (Read 0	Only) Eth	ernet LED Statu	IS			
IP Addr: 192.168.0	001.035	LED1A	LED1B			
Sub Net: 255.255.2	255.000	LED2A	LED2B			
Gateway: 000.000.0		LED3A	LED3B			
MAC Addr: 00 30 11 2	24 09 AD	LEDJA	LED3B			
DCHP: Disabled		LED4A	LED4B			
Module Info						
FW Ver: 1.11						
HW Ver: EtherNet	/IP					
Status: NoError						
Note: The Etherent modu the PQconnect Installation	-		g tool. See			

Figure 77: LED Status Codes

Name	LED PQconnect Ref	LED Color	Off Indicator	On Indicator	Flashing
LED1A	D18	Green	Connections established		Online, no connections established
LED1B	D17	Red	No power or no error	No power or no error Duplicate IP Address, fatal error	
LED2A	D22	Green	No power or no connection	Controlled by a Scanner in Run state	Not configured, Scanner in Idle state
LED2B	D19	Red	No power or no fault	Major fault (EXCEPTION-state, FATAL error etc.)	Recoverable fault(s). Module is configured, but stored parameters differ from currently used parameters
LED3A	D24	Green	Port 1, No 100 Mbit/s link or activity	Port 1, Link established (100 Mbit/s)	Port 1, Link Activity (100 Mbit/s)
LED3B	D23	Yellow	Port 1, No 10 Mbit/s link or activity	Port 1, Link established (10 Mbit/s)	Port 1, Link Activity (10 Mbit/s)
LED4A	D62	Green	Port 2, No 100 Mbit/s link or activity	Port 2, Link established (100 Mbit/s)	Port 2, Link Activity (100 Mbit/s)
LED4B	D25	Yellow	Port 2, No 10 Mbit/s link or activity	Port 2, Link established (10 Mbit/s)	Port 2, Link Activity (10 Mbit/s)

Table 68 : PQconnect LED Codes

TCI, LLC W132 N10611 Grant Drive Germantown, Wisconsin 53022

Phone: 414-357-4480 Fax: 414-357-4484 Helpline: 800-TCI-8282

Web Site: www.transcoil.com

© 2023 TCI, LLC All rights reserved

Publication No: 29289

Effective: 12/17/2024 Revision: S