MotorGuard KMG High Performance Output Sine Wave Filter

Installation, Operation, and Maintenance Manual

TCI, LLC W132 N10611 Grant Drive Germantown, Wisconsin 53022

Phone: 414-357-4480 Fax: 414-357-4484 Helpline: 800-824-8282 Web Site: <u>www.transcoil.com</u> © 2020 TCI, LLC All rights reserved

Product No: 24362 Effective: 03/13/2020 Version: 1.2

Table of Contents

1.0	Safety Instructions	3
Overv	/iew	3
Warn	ings and Cautions	3
Gene	ral Safety Instructions	4
2.0	Introduction	5
Intend	ded Audience	5
Addit	ional Information	5
Instal	lation Checklist	5
3.0	Receiving Inspection and Storage	6
Recei	ving Inspection	6
Warra	anty Information	6
Stora	ge Instructions	7
4.0	Product Description	8
Motor	Guard Sine Wave Filter	8
Mode	I Number Encoding	10
Stand	lard Product Ratings and Dimension Tables	11
Produ	ict Technical Specifications	16
5.0	Pre-installation Planning	18
Verify	v the Application	18
Selec	t a Suitable Location	18
Powe	r Wiring	18
Contr	ol Wiring (for units with PQconnect)	19
Optio	nal Features	19
6.0	Installation Guidelines	20
Moun	ting	20
Wirin	g	20
7.0	MotorGuard Operation	24
Start	Up (Commissioning)	24
Opera	ation	24

8.0 Maintenance and Service	25
MotorGuard Reliability and Service Life	25
Periodic Maintenance	25
For Units with PQconnect:	25
Troubleshooting	25
9.0 PQconnect	26
Product Description	26
Modbus RTU	26
USPTL4 RS485 Converter Dip Switch settings	37
Replacement Parts	46
Factory Contacts and Tech Support	46
10.0 Drawings	47

1.0 Safety Instructions

Overview

This section provides the safety instructions which must be followed when installing, operating and servicing the KMG MotorGuard Filter. If neglected, physical injury or death may follow, or damage may occur to the MotorGuard or equipment connected to the MotorGuard. The material in this chapter must be read and understood before attempting any work on, or with, the product.

The MotorGuard is intended to be connected to the output terminals of a variable frequency drive (VFD). An AC motor is connected to the output terminals of the MotorGuard and receives power from the VFD through the MotorGuard. The instructions, and particularly the safety instructions, for the VFD, motor and any other related equipment must be read, understood and followed when working on any of the equipment.

Warnings and Cautions

This manual provides two types of safety instructions.

Warnings caution readers about conditions, which can, if proper steps are not taken, lead to a serious fault condition, physical injury, or death.

Cautions are used to draw attention to instructions. Failure to properly follow such instructions may lead to a malfunction and possible equipment damage.

Warnings

Readers are informed of situations that can result in serious physical injury and/or serious damage to equipment with warning statements marked with the following symbols:

Warning	Dangerous Voltage Warning: warns of situations in which a high voltage can cause physical injury and/or equipment damage. The text next to this symbol describes ways to avoid the danger.
Warning	General Warning: warns of situations that can cause physical injury and/or equipment damage by means other than electrical. The text next to this symbol describes ways to avoid the danger.
Warning	Electrostatic Discharge Warning: warns of situations in which an electrostatic discharge may damage equipment. The text next to this symbol describes ways to avoid the danger.

Cautions

Readers are informed of situations that can lead to a malfunction and possible equipment damage with caution statements:

Section 1.0 Safety Instructions

General Safety Instructions

These safety instructions are intended for all work on the MotorGuard. Additional safety instructions are provided at appropriate points on other sections of this manual.

Warning	Be sure to read, understand, and follow all safety instructions.
Warning	Only qualified electricians should carry out all electrical installation and maintenance work on the MotorGuard.
Warning	All wiring must be in accordance with the National Electrical Code (NEC) and/or any other codes that apply to the installation site.
Warning	Disconnect all power before working on the equipment. Do not attempt any work on a powered MotorGuard.
Warning	The MotorGuard, VFD, motor, and other connected equipment must be properly grounded.
Warning	The MotorGuard receives power from two or more sources.
	Three-phase power from the output terminals of the VFD is connected to the main input terminals of the MotorGuard.
	Power from a single-phase 120, 240 or 480 volt supply is connected to the MotorGuard for the cooling fan and PQconnect.
	The PQconnect alarm contacts may be connected to a circuit that receives power from another source.
	All of these sources of power must be disconnected before working on the MotorGuard.
Warning	After switching off the power, always allow 5 minutes for the capacitors in the MotorGuard and in the VFD to discharge before working on the MotorGuard, the VFD, the motor, or connecting wiring. It is good practice to check with a voltmeter to make sure that all sources of power have been disconnected and that all capacitors have discharged before beginning work.
Warning	The VFD output terminals and the motor cables are at a dangerously high voltage when power is applied to the VFD regardless of motor operation.

2.0 Introduction

Thank you for selecting the KMG MotorGuard High Performance Output Filter. TCl has produced this filter for use in many PWM variable frequency drive (VFD) applications that require low distortion sine wave output power. This manual describes how to install, operate, and maintain the MotorGuard filter.

Intended Audience

This manual is intended for use by all personnel responsible for the installation, operation, and maintenance of the MotorGuard. Such personnel are expected to have knowledge of electrical wiring practices, electronic components, and electrical schematic symbols.

Additional Information

This manual provides general information describing your MotorGuard filter. More specific information is provided by the drawings shipped with the unit. Be sure to carefully review the information provided by these drawings. Information provided by the drawings shipped with the unit takes precedence over the information provided in this manual.

Installation Checklist

The following are the key points to be followed for a successful installation. These points are explained in detail in the following sections of this manual.

- Make sure that the installation location will not be exposed to direct sunlight, corrosive or combustible airborne contaminants, excessive dirt, or liquids.
- Select a mounting area that will allow adequate cooling air and maintenance access.
- Make sure that all wiring conforms to the requirements of the National Electric Code (NEC) and/or other applicable electrical codes.
- Connect the MotorGuard equipment grounding lug to the system ground of the premises wiring system. Use a properly sized grounding conductor.
- Wire the output power terminals of the VFD, T1(U), T2(V), & T3(W) to the input terminals of the MotorGuard, U, V, & W.
- Wire the output power terminals, of the MotorGuard, T1, T2, & T3 to the motor.
- Connect control power to the MotorGuard.
- For PQconnect option: Connect the MotorGuard fault relay contact to the appropriate fault monitoring circuit.
- Make sure that the VFD is set for operating modes and ranges that are compatible with the MotorGuard.
- Check everything thoroughly before operating the equipment.

3.0 Receiving Inspection and Storage

Receiving Inspection

The MotorGuard has been thoroughly inspected and functionally tested at the factory and carefully packaged for shipment.

When you receive the unit, you should immediately inspect the shipping container and report any damage to the carrier that delivered the unit.

Verify that the part number of the unit you received is the same as the part number listed on your purchase order.

Warranty Information

TCI, LLC ("TCI") warrants to the original purchaser only that MotorGuard products will be free from defects in materials and workmanship under normal use and service for a period originating on the date of shipment from TCI and expiring at the end of One (1) year of useful service, not to exceed 18 months from the date of shipment. The foregoing limited warranty is TCI's sole warranty with respect to its products and TCI makes no other warranty, representation or promise as to the quality or performance of TCI's products. THIS EXPRESS LIMITED WARRANTY IS GIVEN IN LIEU OF AND EXCLUDES ANY AND ALL EXPRESS OR IMPLIED WARRANTIES INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This warranty shall not apply if the product was:

- altered or repaired by anyone other than TCI;
- applied or used for situations other than those originally specified; or
- subjected to negligence, accident, or damage by circumstances beyond TCI's control, including but not limited to, improper storage, installation, operation or maintenance.

If, within the warranty period, any product shall be found in TCI's reasonable judgment to be defective, TCI's liability and the Buyer's exclusive remedy under this warranty is expressly limited, at TCI's option, to (i) repair or replacement of that product, or (ii) return of the product and refund of the purchase price.

Such remedy shall be Buyer's sole and exclusive remedy. TCI SHALL NOT, IN ANY EVENT, BE LIABLE FOR INCIDENTAL DAMAGES OR FOR CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, LOSS OF INCOME, LOSS OF TIME, LOST SALES, INJURY TO PERSONAL PROPERTY, LIABILITY BUYER INCURS WITH RESPECT TO ANY OTHER PERSON, LOSS OF USE OF THE PRODUCT OR FOR ANY OTHER TYPE OR FORM OF CONSEQUENTIAL DAMAGE OR ECONOMIC LOSS.

The foregoing warranties do not cover reimbursement for removal, transportation, reinstallation, or any other expenses that may be incurred in connection with the repair or replacement of the TCI product.

The employees and sales agents of TCI are not authorized to make additional warranties about TCI's products. TCI's employees and sales agents oral statements do not constitute warranties, shall not be relied upon by the Buyer and are not part of any contract for sale. All warranties of TCI embodied in this writing and no other warranties are given beyond those set forth herein.

TCI will not accept the return of any product without its prior written approval. Please consult TCI Customer Service for instructions on the Return Authorization Procedure.

Section 3.0 Receiving Inspection and Storage

Storage Instructions

If the MotorGuard is to be stored before use, be sure that it is stored in a location that conforms to published storage humidity and temperature specifications stated in this manual. Store the unit in its original packaging.

4.0 **Product Description**

MotorGuard Sine Wave Filter

The MotorGuard is a low-pass sine wave filter designed and developed by TCI to deliver conditioned power to motor loads driven by PWM drives at a variety of lead lengths. The MotorGuard is available for 460/480 volt and 575/600 volt systems.

The MotorGuard is a passive filter connected in series with the output terminals of the variable frequency drive. It is designed to remove the carrier frequency distortion from the output voltage waveform. The use of this low-pass, L-R-C device will result in a nearly pure sine wave voltage profile. This design will reduce the effects of the reflected wave phenomenon, (dv/dt), such as insulation damage or premature failure in motors, transformers and VFD output cables. The MotorGuard will also reduce the effects of stray high frequency harmonic currents, thereby reducing VFD ground fault problems and noise interference in transducer signals.

The MotorGuard is available in two package configurations: Industrial and GP. The Industrial filter is a stand-alone device that can be furnished in its own enclosure and mounted adjacent to the VFD, and is also available on an open panel for mounting within an enclosure provided with the VFD or other equipment. The GP filter is furnished in its own enclosure and mounted adjacent to the VFD.

The MotorGuard is suitable for all lead lengths extending as far as 15,000 feet.

The MotorGuard consists of the following standard features and components:

- An R-L-C power filter circuit with:
 - A TCI 3-phase reactor specifically designed for the MotorGuard
 - o Power resistors
 - High-endurance, harmonic-rated capacitors
- Bleeder resistors to ensure safe capacitor discharge upon filter shutdown.
- Compression terminals for ease and integrity of all power wiring.
- Cooling fans to ensure adequate cooling and safe operating temperatures.

Optional PQconnect:

• PQconnect provides unit status detection, metering, waveforms and power quality data. The PQconnect data is made available via basic Modbus RTU over RS485 serial connection.

KMG IOM

Nameplate Data

Figure 1 shows an example of a MotorGuard nameplate. The following information is marked on the nameplate:

- Part number: encoded model number explained on the following page
- FLA: the rated continuous operating current (RMS amps)
- System Voltage: the maximum VFD output voltage (fundamental)
- Hz: the maximum VFD output frequency (fundamental)
- Phase: 3 The MotorGuard is designed for use only with 3 phase motors.
- Drawing #: outline and mounting dimension of filter
- Schematic #: schematic diagram of filter
- Manufacturing #: for TCI internal use
- Enclosure Type: Industrial filters are open panel construction or NEMA 1 enclosed. GP filters are NEMA 1 or NEMA 3R enclosed.

TCI, LLC	The Leader in Power Quality Solutions and Support					
Milwaukee, WI 53224 Phone: 800-824-8282 www.transcoil.com	KMG High Performance Output Filter					
Part Number: KMG130A01A						
FLA: 130	Drawing #: 101968DG					
System Voltage: 4	80 Schematic #: 24281-6DG					
Hz: 60 MAX	Manufacturing #: 10126					
Phase: 3	Enclosure Type: 1					
Short Circuit Curre	Short Circuit Current: 10kA rms symmetrical, 480V maximum					
	IotorGuard					

Figure 1: Example of MotorGuard Nameplate

KMG IOM

Model Number Encoding

Figures 2 and 3 dentify the significance of each character in the MotorGuard model number. The example model number, KMG130A01A designates an Industrial MotorGuard that is rated 130 amps, 480 volts, and is furnished in a NEMA 1 enclosure.

Figure 2: MotorGuard Model Number Encoding – Industrial Version

Figure 3: MotorGuard Model Number Encoding – General Purpose Version

The MotorGuard has a current rating rather than a horsepower rating. The rating and dimension tables in the following section list the nominal horsepower ratings corresponding to the current ratings of the standard models.

Standard Product Ratings and Dimension Tables

The following tables list the ratings and dimensions of the standard MotorGuard models:

- Table 1 lists 480 Volt models on open panels.
- Table 2 lists 480 Volt models in NEMA 1 enclosures.
- Table 3 lists 600 Volt models on open panels.
- Table 4 lists 600 Volt models in NEMA 1 enclosures.
- Table 5 lists 480 Volt models in NEMA 1 enclosures.
- Table 6 lists 480 Volt models in NEMA 3R enclosures.
- Table 7 lists 600 Volt models in NEMA 1 enclosures.
- Table 8 lists 600 Volt models in NEMA 3R enclosures.

Model Number	Nominal Horsepower	Current Rating (amps)	Heat Loss (Watts)	Weight (Ibs.)	Height (in.)	Width (in.)	Depth (in.)
KMG8A00A	5	8	300	60			
KMG12A00A	7.5	12	350	60			
KMG16A00A	10	16	400	70		75 17.00	
KMG23A00A	15	23	550	75	20.75		11 75
KMG30A00A	20	30	650	85	30.75		11.75
KMG35A00A	25	35	750	85			
KMG45A00A	30	45	850	100			
KMG55A00A	40	55	1000	115			
KMG65A00A	50	65	1100	160		17.00	
KMG80A00A	60	80	1550	175			
KMG110A00A	75	110	1700	195	56.00		11 75
KMG130A00A	100	130	2050	200	50.00		11.75
KMG160A00A	125	160	2450	250			
KMG200A00A	150	200	3300	255			
KMG250A00A	200	250	3700	445			
KMG305A00A	250	305	4700	460	60.00	32.00	14.75
KMG362A00A	300	362	4650	475			
KMG420A00A	350	420	5400	580			
KMG480A00A	400	480	6050	635	60.00	32.00	16.38
KMG600A00A	500	600	7350	645			
KMG750A00A	600	750	8800	760	60.00	32.00	17.75

Table 1: Industrial 480 Volt Models on Open Panels

Table 2: Industrial 480 Volt Models in NEMA 1 Enclosures

Model Number	Nominal Horsepower	Current Rating (amps)	Weight (Ibs.)	Height (in.)	Width (in.)	Depth (in.)
KMG8A01A	5	8	110			
KMG12A01A	7.5	12	110			
KMG16A01A	10	16	120		1.38 Wall 17.50 bunted	
KMG23A01A	15	23	125	31.38		10.14
KMG30A01A	20	30	140	Vvali Mounted		12.14
KMG35A01A	25	35	140	Wounted		
KMG45A01A	30	45	155	-		
KMG55A01A	40	55	170			
KMG65A01A	50	65	245		17.52	10.40
KMG80A01A	60	80	260			
KMG110A01A	75	110	280	56.00		
KMG130A01A	100	130	300	Mounted		16.40
KMG160A01A	125	160	340	Wounted		
KMG200A01A	150	200	345			
KMG250A01A	200	250	770			
KMG305A01A	250	305	790			
KMG362A01A	300	362	800	76.50		
KMG420A01A	350	420	915	Free	36.00	24.00
KMG480A01A	400	480	970	Standing		
KMG600A01A	500	600	975			
KMG750A01A	600	750	1085			

KMG IOM

Model Number	Nominal Horsepower	Current Rating (Amps)	Heat Loss (Watts)	Weight (Ibs.)	Height (in.)	Width (in.)	Depth (in.)
KMG8C00A	5	8	400	60			
KMG10C00A	7.5	10	400	65			
KMG12C00A	10	12	400	70		30.75 17.00	
KMG20C00A	15	20	550	75	20.75		11 75
KMG25C00A	20	25	700	85	30.75		11.75
KMG28C00A	25	28	750	90			
KMG35C00A	30	35	800	100			
KMG45C00A	40	45	950	115			
KMG55C00A	50	55	1200	160		17.00	
KMG65C00A	60	65	1600	175			
KMG80C00A	75	80	1650	195	56.00		11.75
KMG110C00A	100	110	2250	225			
KMG130C00A	125	130	2300	250			
KMG160C00A	150	160	2500	260	56.00	17.00	14.78
KMG200C00A	200	200	3500	450			
KMG250C00A	250	250	4500	460			
KMG305C00A	300	305	5100	475	60.00	32.00	14.75
KMG362C00A	350	362	6100	580			
KMG420C00A	400	420	6900	635			
KMG500C00A	500	500	7900	645	60.00	32.00	16.00
KMG600C00A	600	600	9000	750	00.00	52.00	10.00

Table 3: Industrial 600 Volt Models on Open Panels

Table 4: Industrial 600 Volt Models in NEMA 1 Enclosures

Model Number	Nominal Horsepower	Current Rating (Amps)	Weight (Ibs.)	Height (in.)	Width (in.)	Depth (in.)	
KMG8C01A	5	8	115				
KMG10C01A	7.5	10	115				
KMG12C01A	10	12	120				
KMG20C01A	15	20	135	31.38	31.38 Wall 17.50 Mounted	10.14	
KMG25C01A	20	25	140	Vvali Mounted		12.14	
KMG28C01A	25	28	145	Wounted			
KMG35C01A	30	35	155				
KMG45C01A	40	45	175				
KMG55C01A	50	55	260		17.52		
KMG65C01A	60	65	265	7			
KMG80C01A	75	80	265	56.00		17 50	16.40
KMG110C01A	100	110	290	Vvali Mounted		16.40	
KMG130C01A	125	130	295	Wounted			
KMG160C01A	150	160	340				
KMG200C01A	200	200	770				
KMG250C01A	250	250	775				
KMG305C01A	300	305	790	76.50			
KMG362C01A	350	362	975	Free	36.00	24.00	
KMG420C01A	400	420	975	Standing			
KMG500C01A	500	500	1015				
KMG600C01A	600	600	1015				

Model Number	Nominal Horsepower	Current Rating (Amps)	Weight (Ibs.)	Height (in.)	Width (in.)	Depth (in.)
KMG55AG010000	40	55	209			
KMG65AG010000	50	65	215			
KMG80AG010000	60	80	235) 18.67	
KMG110AG010000	75	110	220	36.50		29.50
KMG130AG010000	100	130	225			
KMG160AG010000	125	160	250			
KMG200AG010000	150	200	260			
KMG250AG010000	200	250	595			
KMG305AG010000	250	305	625		64.00 24.17	
KMG362AG010000	300	362	630	64.00		40.00
KMG420AG010000	350	420	635			42.00
KMG480AG010000	400	480	635			
KMG600AG010000	500	600	755			1

Table 5: General Purpose 480 Volt Models in NEMA 1 Enclosures

Table 6: General Purpose 480 Volt Models in NEMA 3R Enclosures

Model Number	Nominal Horsepower	Current Rating (Amps)	Weight (Ibs.)	Height (in.)	Width (in.)	Depth (in.)
KMG55AG3R0000	40	55	209			
KMG65AG3R0000	50	65	215			
KMG80AG3R0000	60	80	235			
KMG110AG3R0000	75	110	220	36.50	18.67	29.50
KMG130AG3R0000	100	130	225			
KMG160AG3R0000	125	160	250			
KMG200AG3R0000	150	200	260			
KMG250AG3R0000	200	250	595			
KMG305AG3R0000	250	305	625			
KMG362AG3R0000	300	362	630	64.00	24 17	42.00
KMG420AG3R0000	350	420	635		24.17	42.00
KMG480AG3R0000	400	480	635			
KMG600AG3R0000	500	600	755			

Model Number	Nominal Horsepower	Current Rating (Amps)	Weight (Ibs.)	Height (in.)	Width (in.)	Depth (in.)
KMG45CG010000	40	45	209			
KMG55CG010000	50	55	235			
KMG65CG010000	60	65	235			
KMG80CG010000	75	80	266	36.50	18.67	29.50
KMG110CG010000	100	110	275			
KMG130CG010000	125	130	280			
KMG160CG010000	150	160	290			
KMG200CG010000	200	200	570			
KMG250CG010000	250	250	615			
KMG305CG010000	300	305	620			
KMG362CG010000	350	362	650	64.00	24.17	42.00
KMG420CG010000	400	420	675			
KMG500CG010000	500	500	810			
KMG600CG010000	600	600				

Table 7: General Purpose 600 Volt Models in NEMA 1 Enclosures

Table 8: General Purpose 600 Volt Models in NEMA 3R Enclosures

Model Number	Nominal Horsepower	Current Rating (Amps)	Weight (Ibs.)	Height (in.)	Width (in.)	Depth (in.)
KMG45CG3R0000	40	45	209			
KMG55CG3R0000	50	55	235			
KMG65CG3R0000	60	65	235			
KMG80CG3R0000	75	80	266	36.50	18.67	29.50
KMG110CG3R0000	100	110	275			
KMG130CG3R0000	125	130	280			
KMG160CG3R0000	150	160	290			
KMG200CG3R0000	200	200	570			
KMG250CG3R0000	250	250	615			
KMG305CG3R0000	300	305	620			
KMG362CG3R0000	350	362	650	64.00	24.17	42.00
KMG420CG3R0000	400	420	675			
KMG500CG3R0000	500	500	810			
KMG600CG3R0000	600	600				

Product Technical Specifications

Tables 9 and 10 list the major technical specifications for the MotorGuard product line.

Table 9: MotorGuard Technical Specifications – Industrial

Current ratings	Continuous current: 8 to 750 amps. See Rating and Dimension tables
	Intermittent current: 150% for 1 minute out of every 60 minutes
VFD Drive output voltage	460/480 and 575/600 V, 3 ph, at fundamental base frequency
VFD Drive output frequency	0 to 80 Hz
VFD Drive carrier frequency	2 kHz and 16 kHz, ideally 4 kHz to 8 kHz
Control power input	For fan operation.
	Maximum peak voltage of output waveform – 480 V models: 1000 V – 600 V models: 1500 V
Filter performance	Maximum dV/dt of output waveform – 480 V models: 500 V/µs – 600 V models: 1500 V/µs
Maximum elevation	3,300 feet (1,000 meters) as standard. Product must be equipped with special cooling provisions for operation above this level
Maximum ambient operating temperature	40 °C (104 °F) as standard. Product must be equipped with special cooling provisions for operation above this temperature.
Maximum ambient storage temperature	50 °C (122 °F)
Maximum humidity, operating or storage	95%, non-condensing.
Enclosure options	Open panel for mounting in an enclosure furnished by others NEMA 1 enclosure
Enclosure finish	Free standing enclosures: ANSI 61 gray Wall mount enclosures: White Matte (beige) Munsel 5.8Y7.83/1
Agency approvals or certifications	UL and cUL Listed to UL508A and CSA-C22.2 No.
Insertion impedance	Approximately 6.5% at 60 Hz & full load current
Fusing and protection:	Unit has internal fuse protection and a performance monitoring circuit.
Capacitors	Oil filled high endurance design (no PCBs)

Current ratings	Continuous current: 55 to 600 amps. See Rating and Dimension tables	
	Intermittent current: 150% for 1 minute out of every 60 minutes	
VFD Drive output voltage	460/480 and 575/600 V, 3 ph, at fundamental base frequency	
VFD Drive output frequency	0 to 80 Hz	
VFD Drive carrier frequency	2 kHz and 16 kHz, Ideally 4 kHz to 8 kHz	
Control power input	For fan operation.	
	Maximum peak voltage of output waveform	
Filter performance	– 480 V models: 815 V – 600 V models: 1,018 V	
Filler performance	Maximum dV/dt of output waveform	
	– 480 V models: 5 V/μs – 600 V models: 6 V/μs	
Maximum elevation	3,000 feet (1,000 meters) as standard. Product must be equipped with special cooling provisions for operation above this level	
Maximum ambient operating temperature	40 °C (104 °F) as standard. Product must be equipped with special cooling provisions for operation above this temperature.	
Maximum ambient storage temperature	50 °C (122 °F)	
Maximum humidity, operating or storage	95%, non-condensing.	
Enclosure options	General Purpose 3R enclosure	
Insertion impedance	Approximately 6.5% at 60 Hz & full load current	
Capacitors	Oil filled high endurance design (no PCBs)	

Table 10: MotorGuard Technical Specifications – General Purpose

5.0 **Pre-installation Planning**

Verify the Application

MotorGuard Ratings

Make sure that the MotorGuard is correct for the application. The voltage and current ratings of the MotorGuard must match the output voltage and current ratings of the connected variable frequency drive as it is configured for use with the connected motor.

Variable Frequency Drive Settings

Make sure that the variable frequency drive will be set for operation modes and ranges that are compatible with the MotorGuard:

- Maximum output frequency: 80 Hz
- PWM switching frequency between 2 kHz and 16 kHz, ideally 4 kHz to 8 kHz
- Mode of operation: "scalar" or "V/Hz" without DC braking unless the drive application has been confirmed by TCI Technical Support

Select a Suitable Location

Environment

Locating the MotorGuard in a suitable environment will help ensure proper performance and a normal operating life.

Unless specifically labeled as approved for such use, this equipment is not suitable for use in an explosive atmosphere or in a "Hazardous (Classified) Location" as defined in article 500 of the National Electrical Code.

The unit must be installed in an area where it will not be exposed to:

- Corrosive liquids or gasses
- Explosive or combustible gases or dust
- Excessive airborne dirt and dust
- Excessive vibration

In addition to the above, products that are not in a 3R enclosure should not be exposed to:

- Direct sunlight
- Rain or excessive dripping liquids

Mounting Area

Select a mounting area that will allow sufficient cooling air to flow through the unit. Adequate space should be provided to allow access for maintenance.

Mounting an open panel unit

If you are mounting an open panel unit in your own enclosure, you must provide an enclosure that is adequately sized and ventilated sufficiently to prevent overheating. The rating and dimension tables for open panel units list the watts of heat loss that is dissipated by the MotorGuard. The maximum temperature of the air around the MotorGuard's capacitors and PQconnect should not exceed 50 $^{\circ}$ C (104 $^{\circ}$ F).

Power Wiring

The conduit and wiring from the output of the variable frequency drive to the motor must be routed to the MotorGuard and then to the motor. When selecting a mounting location for the MotorGuard, plan for the routing of the power wiring.

Section 5.0 Pre-installation Planning

Control Wiring (for units with PQconnect)

The MotorGuard requires 120 VAC single-phase power for the PQconnect and cooling fan. The control power source must be ensured to be energized whenever the variable frequency drive is operating. A control power transformer is provided in the MotorGuard to allow control power to be obtained from the three-phase source that provides input power to the VFD. Fuses are provided on the control transformer, but the wires connecting control power to the MotorGuard will need to be appropriately protected at the power source.

Refer to the drawings furnished with your MotorGuard to determine the control power VA required.

Optional Features

Additional wiring requirements may apply to MotorGuard units that are equipped with certain optional features such as a space heater or 120 VAC control power supplied directly rather than through a control power transformer. For instructions covering these additional requirements, refer to drawings and/or other supplemental information furnished with the unit.

KMG IOM

6.0 Installation Guidelines

Mounting

The MotorGuard must be mounted vertically on a smooth, solid surface, free from heat, dampness, and condensation.

Wiring

Cable Entry Locations

Figure 4: Cable Entry Location for General Purpose units

Field Wiring Connection Terminals

Compression type terminals may be provided for all field wiring connections. The control circuit terminals will accommodate 18 AWG to 10 AWG wire and should be tightened to 18 in.-lbs. torque. The wire size capacity ranges and tightening torque for the grounding and power terminals are listed in the following tables.

KMG IND	Ground Lug		Input and Output Motor Power	
Model Numbers	Wire Size	Torque (inlb.)	Wire Size	Torque (inlb.)
KMG8A to KMG55A KMG8C to KMG45C	14 - 1/0 AWG	200	22 - 16 AWG 14 - 6 AWG 4 - 2 AWG and 1 AWG (7 & 19 strand only)	25 30 35
KMG65A to KMG130A KMG55C to KMG130C	6 - 2/0 AWG	120	6 - 2/0 AWG	120
KMG160A to KMG200A KMG160C to KMG200C	6 AWG - 250 MCM	275	6 AWG - 250 MCM	275
KMG250A to KMG305A KMG250C to KMG305C	4 AWG - 600 MCM or (2) 1/0 AWG - 250 MCM	500	4 AWG - 600 MCM or (2) 1/0 AWG - 250 MCM	500
KMG362A KMG362C to KMG420C	(2) 4 AWG - 350 MCM	275	(2) 4 AWG - 350 MCM	275
KMG420A to KMG600A KMG500C to KMG600C	(2) 2 AWG - 600 MCM	500	(2) 2 AWG - 600 MCM	500
KMG750A	(3) 2 AWG - 600 MCM	375	(3) 2 AWG - 600 MCM	375

Table 11: Motor Power Terminal Wire Size Capacity Range and Tightening Torque (Cu or Al) - Industrial

Table 12: Motor Power Terminal Wire Size Capacity Range and Tightening Torque (Cu or Al) – General Purpose

KMG GP	Ground Lug		Input and Output Motor Power	
Model Numbers	Wire Size	Torque (inIb.)	Wire Size	Torque (inIb.)
KMG55A KMG45C	14 - 1/0 AWG	200	22 - 16 AWG 14 - 6 AWG 4 - 2 AWG and 1 AWG (7 & 19 strand only)	25 30 35
KMG65A to KMG130A KMG55C to KMG130C	6 - 2/0 AWG	120	6 - 2/0 AWG	120
KMG160A to KMG200A KMG160C to KMG200C	6 AWG - 250 MCM	275	6 AWG - 250 MCM	275
KMG250A to KMG305A KMG250C to KMG305C	4 AWG - 600 MCM or (2) 1/0 AWG - 250 MCM	500	4 AWG - 600 MCM or (2) 1/0 AWG - 250 MCM	500
KMG362A KMG362C to KMG420C	(2) 4 AWG - 350 MCM	275	(2) 4 AWG - 350 MCM	275
KMG420A to KMG600A KMG500C to KMG600C	(2) 2 AWG - 600 MCM	500	(2) 2 AWG - 600 MCM	500

Connection Diagram

Figure 5 shows the typical wiring connections between the MotorGuard and the VFD and motor. Note that separate conduits may be required for the control power and fault contact wiring. Refer to the instructions for the VFD or other equipment to which the fault contact is connected.

Figure 5: Typical Connection Diagram

Grounding

The MotorGuard panel equipment grounding lug must be connected to the ground of the premises wiring system. The equipment grounding connection must conform to the requirements of the National Electric Code (NEC) and/or any other codes that apply to the installation site. The ground connection must be made using a wire conductor. Metallic conduit is not a suitable grounding conductor. The integrity of all ground connections should be periodically checked.

Power Wiring

Connect the output of the VFD, terminals T1(U), T2(V), & T3(W), to the input of the MotorGuard, terminals U, V, & W. Connect the motor to the output of the MotorGuard, terminals T1, T2, & T3.

	Use wire that is appropriate for the voltage and current rating of the motor.
Caution	For units rated less than 100 amps, use copper or aluminum wire with an insulation temperature rating of 60 °C or higher.
\triangle	For units rated 100 amps or more, use copper or aluminum wire with an insulation temperature rating of 75 °C or higher.
	The wire size and the voltage ratings must conform to the requirements of the National Electrical Code and/or other applicable electrical codes.
	Be sure to also follow the motor wiring instructions provided in the instruction manual for the VFD.

Control Wiring (for units with PQconnect)

Connect control power to the MotorGuard. Be sure to provide fuses or other appropriate protection for the control power wiring. Make sure that the voltage and VA capacity of the control power source matches the MotorGuard's control power input ratings. Refer to the drawings shipped with the unit.

Connect the MotorGuard PQconnect fault output relay contacts to the appropriate fault monitoring circuit. It may be connected to the VFD or to some supervisory control or alarm annunciation equipment.

Fuses

The table below lists the specifications for the LC power circuit fuses in the MotorGuard.

480 V Models		600 V Models			
MotorGuard Rating	Power Fuse	Circuit Rating	MotorGuard Rating	Power Circuit Fuse Rating	
(Amps)	Amps	Туре	(Amps)	Amps	Туре
8	2		8	2	
12	2.5		10	2	
16	4		12	2.5	
23	6	Class CC	20	5	
30	8	Bussmann	25	6	Class CC
35	9	type KLD-R	28	7	Bussmann
45	12	or equivalent	35	9	or equivalent
55	15		45	12	c. oquivaloni
65	20		55	15	
80	20		65	20	
110	30		80	25	
130	35		110	30	
160	40		130	35	
200	50		160	40	
250	70	Class I	200	50	Class T
305	80	Bussmann	250	70	Bussmann
362	90	or equivalent	305	80	type JJS
420	110		362	90	or equivalent
480	125		420	110]
600	150		500	125	
750	200		600	150	

Table 13: RC Power Circuit Fuses for Industrial Model

Control Circuit Fuses

Refer to the drawings furnished with your MotorGuard for control circuit fuse specifications.

Section 7.0 MotorGuard Operation

7.0 MotorGuard Operation

Variable Frequency Drive Settings

Make sure that the variable frequency drive is set for operation modes and ranges that are compatible with the MotorGuard:

- Maximum output frequency: 80 Hz
- PWM switching frequency between 2 kHz and 16 kHz, ideally 4 kHz to 8 kHz. Since the MotorGuard removes most of the harmonic content from the output waveform, quiet motor operation should be achieved with a switching frequency setting within this range.
- Mode of operation: "scalar" or "V/Hz" without DC braking unless the drive applications has been confirmed by TCI Technical Support

Start Up (Commissioning)

Caution	Thoroughly check the installation before applying power and operating the equipment for the first time.
Caution	Never Operate the MotorGuard without a load connected to its output terminals.

Before Applying Power for the First Time

Inspect the installation to make sure that all equipment has been completely and correctly installed in accordance with the *Installation Guidelines* section of this manual.

Before Operating the VFD for the First Time

- Make sure that the MotorGuard monitor board configuration switches are properly set as described above.
- Make sure that the variable frequency drive is set for operation modes and ranges that are compatible with the MotorGuard as described above.

Operation

Since the MotorGuard is a passive filter, it is always operating whenever the variable frequency drive is operating. Whenever the VFD is operating, control power should be applied to the MotorGuard so that the MotorGuard's cooling fan will operate and prevent it from overheating. Control power is also required for the PQconnect.

8.0 Maintenance and Service

MotorGuard Reliability and Service Life

The MotorGuard has been designed to provide a service life that equals or exceeds the life of the variable frequency drive. It has been thoroughly tested at the factory to ensure that it will perform reliably from the moment it is put into service. The following periodic maintenance is recommended to ensure that the MotorGuard will always perform reliably and provide the expected service life.

Periodic Maintenance

Check to see that the installation environment remains free from exposure to excessive dirt and contaminants. Refer to the *Pre-installation Planning* section of this manual.

Check to make sure that the enclosure ventilation openings are clean and unobstructed.

Clean the air filter in units that have filtered air inlets. Clean as often as necessary to prevent dirt build-up from impeding air flow.

Inspect the interior of the enclosure for signs of overheated components. Clean the interior of the enclosure whenever excess dirt has accumulated.

Check the integrity of all power, ground, and control wiring connections.

All electrical connections must be re-torqued annually.

For Units with PQconnect:

Check the status indicating lights on the monitor board as shown below.

Check the operation of the cooling fan.

Troubleshooting

Warning
MonipulationOnly qualified electricians should carry out all electrical installation and maintenance
work on the MotorGuard.
Disconnect all sources of power to the VFD and MotorGuard before working on the
equipment. Do not attempt any work on a powered MotorGuard.

9.0 PQconnect

Product Description

The PQconnect is an integrated controls option for TCI's industry sinewave filter used for filtering the output of variable frequency motor drives (VFDs). In the sinewave filter, the PQconnect provides unit status detection, metering, voltage waveform and power quality data. The PQconnect data is made available via basic Modbus RTU over RS485 serial connection. The PQconnect is UL listed and intended for commercial and industrial applications.

Modbus RTU

The PQconnect Modbus RTU network communication interface transmits and receives command and status data from the PQconnect Modbus master over a RS-485 serial link. Modbus RTU is a simple serial communications protocol originally developed by Modicon for use with Programmable Logic Controllers (PLCs) in control of industrial devices. Modbus RTU is commonly supported by most PLCs and is an open, royalty-free communications standard.

The PQconnect implements a Modbus RTU Master/Slave device, which supports two-wire RS-485 signal levels. The PQconnect communication port used for the Modbus RTU interface is connected directly to the PCB. The communication port is located on the side of the PQconnect board.

Figure 6: PQconnect Modbus RTU Connection

Modbus RTU Connections

The hardware pinout for the J5 communication header and default settings is shown below.

 Table 14:
 Modbus Connector Pin Definitions

J5 Header Pinout	Signal Name	Signal Type
1	No connect	-
2	D-	RS-485 B (non-inverting)
3	GND	RS-485 SC/G
4	D+	RS-485 A (inverting)
5	No connect	-

The default protocol settings for the RS-485 Modbus RTU interface are shown below.

able	15:	Modbus	RTU	Protocol	Settings
------	-----	--------	-----	----------	----------

Parameter	Value	Units		
Baud Rate	38400	Bd		
Data Bits	8	Bits		
Stop Bits	1	Bits		
Parity	Even	-		
Slave ID	10	-		

Table 16: Configuration Switches

	U	
SW1 Configure Modbus Connection		1 – Enable 560 Ω bias resistor on D
	2 – Enable 120 Ω termination resistor.	
	on J5 Header	3 - Enable 560Ω pull-up on D+.

The input and output registers from the HarmonicGuard® Passive filter are mapped to the Modbus Analog Output Holding Registers starting at address 40000. See **Tables 14-16** for definitions of the input register maps and **Tables 8-12** for output register maps. All input and output registers are two bytes in size and formatted as 16-bit signed integers.

Parameter Name	I/O Reg Address Offset	Direction	Format and Examples	Description
SYS_STATE	11	Output	0,1 = Initialization 2 = Power on Delay 3 = Fault Inhibit 4 = Reset 5 = Nominal 6 = Fault Detected 7 = Calibrate offsets 8 = Calibrate Check	Indicates the present state of the system state machine.
DSP_SW_VER	12	Output	Two 8bit ASCII Characters 0x0141 = ASCII for "A1"	Software revision code for processor.
DSP_MODEL_NUM	13	Output	103 = 480 V	System Model Number
V_OUT_A_RMS	30	Output	Volts RMS	Filter output RMS voltage phase A
V_OUT_B_RMS	31	Output	4800 = 480.0 VRMSLL Range: 120 to 690	Filter output RMS voltage phase B
V_OUT_C_RMS	32	Output	VRMSLL	Filter output RMS voltage phase C
V_OUT_A_THD	45	Output		Filter output Phase A THVD (Voltage Total Harmonic Distortion)
V_OUT_B_THD	46	Output	% THVD 50 = 5.0% THVD	Filter output Phase B THVD (Voltage Total Harmonic Distortion)
V_OUT_C_THD	47	Output		Filter output Phase C THVD (Voltage Total Harmonic Distortion)
T_BOARD	48	Output	250 = 25.0 C°	PCB temperature
V_OUT_FUND_HZ	100	Output	Range 1 to 500 Hz	Filter output fundamental frequency
V_IN_CARRIER_HZ	101	Output	Range 1kHz to 16 kHz	Filter input carrier frequency

Table 17: Network Interface OUTPUT/ Feedback Register Map

Table 18: Network Interface OUTPUT/ Feedback Register Map

Parameter Name	I/O Reg Address Offset	Direction	Format and Examples	Description
FAULT_A	200	Output		Example: Enabling all fault conditions is 1111 1111 1111 1111 in binary or 65535 decimal.
FAULT_B	201	Output	0 = Disabled	Reference Fault codes Table Read only value.
FAULT_A_ENABLE_RO	202	Output	To Enable desired fault detections, enter	If a fault is active and the bit corresponding to that status in this
FAULT_B_ENABLE_RO	203	Output	bit mask from table by converting to decimal Range: 0 to 65535	mask is set, the relay will be activated.
FAULT_A_RELAY_ACTION_RO	204	Output		Reference Fault codes Table
FAULT_B_RELAY_ACTION_RO	205	Output		values, modify the corresponding register in the setpoint section below.
SYS_POWER	250	Output	0 = Power Off 1 = Power On	Indicates if the filter has input power available Read only value.
SYS_FAULTED	251	Output	0 = Filter is operating 1 = Filter has detected a fault condition	Indicates filter has faulted. Read only value.
RATED_VOLTAGE_RO	260	Output	4800 = 480.0Vrms Range = 1200 to 6900	Filter rated voltage. Read only value.
RATED_FEQUENCY_RO	262	Output	60 = 60 Hz	Filter rated frequency Read only value.
MB_SLAVE_ADDRESS_RO	300	Output	10	Modbus slave address Read only value.
MB_BAUD_RATE_RO	301	Output	3840 = 38400 baud rate	Modbus baud rate Read only value.

Table 19: Network Interface OUTPUT / Feedback Register Map

Parameter Name	I/O Reg Address Offset	Direction	Format and Examples	Description
MB_PARITY_RO	302	Output	2 = Even	Modbus Parity Read only value
RELAY_CLOSE_DELAY_RO	320	Output	Relay close delay time in milliseconds Range 0 to 60 seconds	Delay time on fault relay being energized when any enabled fault condition is detected. This delay is in addition to any configured delay for a specific fault condition. Read only value. To change this value, modify the corresponding register in the setpoint section below.
RELAY_OPEN_DELAY_RO	321	Output	Relay open delay time in milliseconds Range 0 to 60 seconds	Delay time on fault relay being unenergized when all enabled fault detection conditions have cleared. Read only value. To change this value, modify the corresponding register in the setpoint section below.
OVERVOLTAGE_FAULT_ONSET_RO	ERVOLTAGE_FAULT_ONSET_RO 322 Output Default 125% Banga 100 to 200		Overvoltage onset threshold in percent rated voltage. Example: if filter is rated for 480 V then it will fault on. Read only value. To change this value, modify the corresponding register in the setpoint section below.	
OVERVOLTAGE_FAULT_CLEAR_RO	323	Output		Overvoltage fault clear threshold Read only value. To change this value, modify the corresponding register in the setpoint section below.
OVERVOLTAGE_FAULT_DELAY_RO	324	Output	Fault detection delay time in milliseconds. Default of 6 seconds. Range 0.02 to 60 seconds	Overvoltage fault delay time. Read only value. To change this value, modify the corresponding register in the setpoint section below.
HIGH_FREQUENCY_FAULT_ONSET_RO	325	Output	Default 125% Range 100 to 200	Filter output high frequency fault onset threshold. Example: Frequency higher than 125% of 500 Hz will trigger the fault. Read only value. To change this value, modify the corresponding register in the setpoint section below.
HIGH_FREQUENCY_FAULT_CLEAR_RO	326	Output		High frequency fault clear threshold Read only value. To change this value, modify the corresponding register in the setpoint section below.
HIGH_FREQUENCY_FAULT_DELAY_RO	327	Output	Fault detection delay time in milliseconds. Default of 6 seconds. Range 0.02 to 60 seconds	High frequency fault delay time. Read only value. To change this value, modify the corresponding register in the setpoint section below.

Table 20: Network Interface OUTPUT Register Map

Parameter Name	I/O Reg Address Offset	Direction	Format and Examples	Description
		Output	Default = 60 =	Phase loss fault onset threshold (average of the three filter output voltages)
PHASE_LOSS_FAULT_ONSET_RO	328		60% Range 1 to 100	Read only value. To change this value, modify the corresponding register in the setpoint section below.
			Default = 55 =	Phase loss fault clear threshold (average of the three filter output voltages)
PHASE_LOSS_FAULT_CLEAR_RO	329	Output	55% Range 1 to 100	Read only value. To change this value, modify the corresponding register in the setpoint section below.
			Fault detection delay time in	Phase loss fault delay time.
PHASE_LOSS_FAULT_DELAY_RO	330	Output	Default of 12 seconds. Range 0.02 to 60 seconds	Read only value. To change this value, modify the corresponding register in the setpoint section below.
				Filter output high THVD fault onset threshold.
THD_FAULT_ONSET_RO	331	Output	Default of 120	Read only value. To change this value, modify the corresponding register in the setpoint section below.
			Range 2 to 100	THVD fault clear threshold
THD_FAULT_CLEAR_RO	332	Output		Read only value. To change this value, modify the corresponding register in the setpoint section below.
			Fault detection delay time in milliseconds.	Voltage Total Harmonic Distortion (THVD) fault delay time.
THD_FAULT_DELAY_RO	333	Output	Default of 12 seconds. Range 0.02 to 60 seconds	Read only value. To change this value, modify the corresponding register in the setpoint section below.

Table 21: Network Interface OUTPUT Register Map

Parameter Name	I/O Reg Address Offset	Direction	Format and Examples	Description
REACTOR_OT_DELAY_RO	337	Output	Fault detection delay time in milliseconds. Default of 12 seconds. Range 0.02 to 60 seconds	Tuning reactor overtemperature fault delay. Read only value. To change this value, modify the corresponding register in the setpoint section below.
SYS_SERIAL_NUM_2_RO	350	Output	Parameter contains UUUU in the UUUULLLL-NN serial number format.	Unit serial number section - upper 16 bits of 32-bit unit job number Read only value.
SYS_SERIAL_NUM_1_RO	351	Output	Parameter contains LLLL in the UUUULLLL-NN serial number format.	Unit serial number section - lower 16 bits of 32-bit unit job number Read only value.
SYS_SERIAL_NUM_0_RO	352	Output	Parameter contains NN in the UUUULLLL- NN serial number format.	Unit serial number section - two-digit unit number. Read only value.
SYS_INT_HB	402	Output	Range 0 to 65535	Processor internal heartbeat. Internal counter that counts up and rolls over to zero used to verify processor clock operation.
SYS_BG_HB	403	Output	Range 0 to 65535	Processor background heartbeat. Internal counter that counts up and rolls over to zero used to verify processor clock operation

Table 22: Fault Codes

Bits	Fault Descriptions			
Register A				
0	No fault detected / enabled			
1 Overvoltage Phase A				
2 Overvoltage Phase B				
3 Overvoltage Phase C				
4 High Frequency Phase A-B				
5	High Frequency Phase B-C			
6	High Frequency Phase C-A			
7	Phase Loss (Phase A)			
8	Phase Loss (Phase B)			
9	Phase Loss (Phase C)			
10	High THVD Phase A			
11	High THVD Phase B			
12	High THVD Phase C			
13	Under Temperature			
14 Over Temperature				
15	CPU Error			
Regi	ster B			
0	Reactor Thermal Switch			

Table 23: Network Interface INPUT/Setpoint Register Map

Parameter Name	I/O Reg Address Offset	Direction	Format and Examples	Description
USER_STATE_REQ	500	Input	0 = Initialization 9 = Save current values to flash 150 = Load values from Flash 255 = Restore Defaults to Flash	Note that defaulting the flash will clear all calibration data and require that the calibration procedure be re-run with no voltage applied to the PQconnect board.
TRACE_GO_DONE	501	Input	0 = Capture Done 1 = Start Capture	Update trace data points for waveforms
RELAY_CLOSE_DELAY	505	Input	Relay close delay time in milliseconds Range 0 to 60 seconds	Delay time on fault relay being energized when any enabled fault condition is detected. This delay is in addition to any configured delay for a specific fault condition.
RELAY_OPEN_DELAY	506	Input	Relay open delay time in milliseconds Range 0 to 60 seconds	Delay time on fault relay being unenergized when all enabled fault detection conditions have cleared.
POWER_ON_DELAY	507	Input	Default 20 = 20 milliseconds Range 0.02 to 60 Seconds.	System power on delay
RATED_VOLTAGE	521	Input	4800 = 480 Vrms Range = 120 to 690 Vrms	Filter rated voltage
RATED_FREQUENCY	522	Input	50 = 50 Hz 60 = 60 Hz	Filter rated frequency
FAULT_A_ENABLE	540	Input		Example: Enabling all fault conditions is 1111 1111
FAULT_B_ENABLE	541	Input	0 = Disabled To Enable desired	decimal.
FAULT_A_RELAY_ACTION	542	Input	bit mask from table by converting to decimal	If a fault is active and the bit corresponding to that status in
FAULT_B_RELAY_ACTION	543	Input	- Kange. 0 to 05555	this mask is set, the relay will be activated.
MB_SLAVE_ADDRESS	560	Input	10	Modbus slave address
MB_BAUD_RATE	561	Input	3840 = 38400 baud rate	Modbus baud rate
MB_PARITY	562	Input	2 = Even	Modbus Parity

KMG IOM

Table 24: Network Interface INPUT Register Map

Parameter Name	I/O Reg Address Offset	Direction	Format and Examples	Description
OVERVOLTAGE_FAULT_ONSET	600	Input	DEFAULT = 125%	Set desired Overvoltage onset threshold in percent rated voltage
OVERVOLTAGE_FAULT_CLEAR	601	Input	Range 100 to 200	Overvoltage fault clear threshold
OVERVOLTAGE_FAULT_DELAY	602	Input	Fault detection delay time in milliseconds. Default of 12 seconds. Range 0.02 to 60 seconds	Overvoltage fault delay time
HIGH_FREQUENCY_FAULT_ONSET	603	Input	Default 125% Range 100 to 200	Set desired High frequency fault onset threshold
HIGH_FREQUENCY_FAULT_CLEAR	604	Input	Default 125% Range 100 to 200	Set desired High frequency fault clear threshold
HIGH_FREQUENCY_FAULT_DELAY	605	Input	Fault detection delay time in milliseconds. Default of 6 seconds. Range 0.02 to 60 seconds	High frequency fault delay time
PHASE_LOSS_FAULT_ONSET	606	Input	Default = 60 = 60% Range 1 to 100	Phase loss fault onset threshold (average of the three filter output voltages)
PHASE_LOSS_FAULT_CLEAR	607	Input	Default = 55 = 55% Range 1 to 100	Phase loss fault clear threshold (average of the three filter output voltages)
PHASE_LOSS_FAULT_DELAY	608	Input	Fault detection delay time in milliseconds. Default of 12 seconds. Range 0.02 to 60 seconds	Phase loss fault delay time
THD_FAULT_ONSET	609	Input	Default = 20 = 20% Range 2 to 100	Set desired THVD fault onset threshold
THD_FAULT_CLEAR	610	Input	Default = 20 = 20% Range 2 to 100	Set desired THVD fault clear threshold
THD_FAULT_DELAY	611	Input	Fault detection delay time in milliseconds. Default of 6 seconds. Range 0.02 to 60 seconds	Voltage Total Harmonic Distortion (THVD) fault delay time
REACTOR_OT_DELAY	615	Input	Fault detection delay time in milliseconds. Default of 12 seconds. Range 0.02 to 60 seconds	Tuning reactor overtemperature fault delay

Table 25: Network Interface INPUT Register Map

SYS_NULL_EN	700	Input	0 = Disabled 1 = Enabled	System auto null calibration enable. This value auto clears to 0 when calibration complete.
SYS_SERIAL_NUM_2	810	Input	Parameter contains UUUU in the UUUULLLL-NN serial number format.	Unit serial number section - upper 16 bits of 32-bit unit job number
SYS_SERIAL_NUM_1	811	Input	Parameter contains LLLL in the UUUULLLL-NN serial number format.	Unit serial number section - lower 16 bits of 32-bit unit job number
SYS_SERIAL_NUM_0	812	Input	Parameter contains NN in the UUUULLLL- NN serial number format.	Unit serial number section - two-digit unit number

PQconnect Hardware

Example Application Using "Simply Modbus Master 8.1.0"

The Modbus RTU network interface port is configured for RS-485 signal levels. The following example uses an RS-485 to USB converter to connect the PQconnect to a laptop PC running the Modbus RTU master application. The picture below shows an example "B&B SmartWorx, Inc Model: USPTL4" RS-485 to USB converter. As another alternative RS-485 converter there is WINGONEER USB 2.0 to RS485 Serial Converter Adapter CP2104.

Figure 7: B&B SmartWorx, Inc Model: USPTL4 model RS-422/485 converter

With the example converter above, the user can make proper connections from the RS485 converter to the PQconnect J5 communication header. The table below indicates the positions where the RS485 connections lead to. Please ensure the correct dip switch settings are applied before installing.

Table 26: USPTL4 to J5 Header Connections

USPTL4 Pin Out	J5 Header Pinout		
-	No connect		
TDA (-)	A (Pin 2)		
GND	GND (Pin 3)		
TDB(+)	B (Pin 4)		
-	No connect		

USPTL4 RS485 Converter Dip Switch settings

All four switches of the B&B converter from the factory should be set to the ON position and should look like the following.

Figure 8: Dip Switch settings

Example Setup Instructions to Read Data from the PQconnect Unit:

- Connect the cable to the communication header on the side of the board
 - Connect USB end to the computer
 - Determine the assigned COM port number for the RS-485 to USB converter using the computer device manager control panel.
 - The converter used in this example typically enumerates between the range of COM5 to COM20 on a standard laptop computer running the Microsoft windows operating system
 - Open the Simply Modbus Master software
 - Can be downloaded from the link below:
 - o http://www.simplymodbus.ca/manual.htm
 - The trial version of the software is free and fully functional for this task hence no License key is necessary
 - Next, configure the fields in the screen as shown below. These are again the default settings of the PQconnect COM port.
 - o Note: The "notes" section of the display data registers are filled in manually

Simply Modbus Master 7.1.2					
modeCOM portbauddata bits stop bitsparity	copy down 🛞	register#	bytes	results	notes dear notes 📎
RTU 19 19200 8 1 even	16bit INT	40500	0000	0	Running
Slave ID First Register No. of Regs	16bit INT	40501	0001	1	Power On
113	16bit INT	40502	0000	0	Faulted
function minus offset	16bit INT	40503	0000	0	Current Limit
2 byte ID code 40001	16bit INT	40504	01DF	479	Line-Line Voltage
	16bit INT	40505	OOFB	248	Line Current
	16bit INT	40506	0064	100	Power Factor
	16bit INT	40507	0000	0	Network Start Enable
SEND					
load before send response time (seconds) 0.1					
Response fail in 2.0					
71 03 10 00 00 00 01 00 00 00 00 01 DF 00 F3 00 64 00 00 B3 19					
Image: Wigh byte/Low byte expected response bytes Image: Wigh word/Low word crc B319 21	send continuously	respoi	nse time 0.1 sponses 4	max 0.1 avg 0.100	■ RTS delay delay (ms) ON ‡0
SAVE CFG RESTORE CFG WRITE ABOUT	30.0	sends	failed 0	min 0.1	
Ctrl-H for context help			LOGDAN		SAVE LOG dear log 📎
2015/06/15 12:14:30 < 71 03 10 00 00 00	01 00 00 0	0 00 01	E0 00 F2 FF	A5 00 00 85 F3	A
2015/06/15 12:14:41 >>> 71 03 01 F3 00 0 2015/06/15 12:14:41 < 71 03 10 00 00 00	08 BE F3	0 00 01	DF 00 F8 00	64 00 00 B3 19	, E

Example Setup Instructions to Write Data to the PQconnect Unit:

- To change the voltage rating of the unit:
- Select the "WRITE" button on the screen shown above.
- The screen below will be shown. Configure the fields as shown in the picture.

Simply Modbus Master Write 7.1.2	
mode COM port baud data bits stop bits parity	
Slave ID First Register # Values to Write	Simply Modbus Master Write 7.1.2 - 🗆 🗙
function 2 byte ID code minus offset register size 4 6 40001 \$16 bit registers	mode COM port baud data bits stop bits parity
Values to Write register # bytes Data Type ↓ 1.0000 40564 0001 416bit INT	10 10
✓ High byte/ Low byte ✓ High word/ Low word	Values to Write register # bytes Data Type
Command	✓ High byte/Low byte ✓ High word/Low word
response time (seconds) 0.1 Response fail in \$2.0	Command
71 06 02 33 00 01 B2 8D	response time (seconds) 2.0 Response fail in 2.0
RTS delay (ms) SAVE CFG expected response bytes 8 ON 0 orc B28D rc OFF 0 RESTORE CFG SAVE LOG dear log @	RTS delay (ms) SAVE CPG expected response bytes arc
2015/06/15 12:56:43 < 71 06 02 33 00 00 73 4D 2015/06/15 12:56:50 >> 71 06 02 33 00 01 B2 8D 2015/06/15 12:56:50 >> 71 06 02 33 00 01 B2 8D	OFF 0 RESTORE CPG SAVELOG dear log 3

 Select 4800 in the field "Values to Write" to change the voltage rating of the unit to 480 Vrms.

PCB Connections

Most customer connections to PQ connect will be made on the PCB. Refer to connection diagram in **Figure 9** and to drawing 24281-1PQ for the wiring schematic. The details of the power and communications terminals are shown in

Table 28 Form C relays are available on the PCB, these connections are shown in Table 27 Two relay outputs are available on the PCB.

Figure 9: PQconnect Connections

	Table 27:	Form C Relay	Contacts
--	-----------	--------------	----------

Terminal	Pin	Description	Label	Tightening Torque	Wire Range
J7	1, 2	Reactor Thermal Switch	Customer contacts	3.5 lb-in (0.4 Nm)	28-12 AWG
J8	N/A	N/A	N/A	N/A	N/A
	1		Normally Closed		
J11	2	Fault Relay	Common	4.4 lb-in (0.5 Nm)	28-14 AWG
	3		Normally Open		
	1		Normally Closed		
J10	2	Inverted	Common	4.4 lb-in (0.5 Nm)	28-14 AWG
	3		Normally Open		

Note: Form-C relay contacts are gold plated with a load rating of 5.0A @ 120VAC

Terminal	Pin	Description	Label	Rating	
	1	Turing Decision Output	Phase A		
J1	2	Connections	Phase B		
	3		Phase C	600VAC	
	1		Phase A (Output of Tuning reactor)		
J2	2	I uning Reactor	Phase B (Input of Tuning Reactor)		
	3	Connections	Not connected		
J3	1,2,3	Not Connected		N/A	
J4	1-8	Not Connected		N/A	
	1		Not Connected		
	2		B (non-inverting)		
J5	3	RS485	Ground	N/A	
	4		A (inverting)		
	5		Not connected		
112	1	Input Power from control	Neutral	120 \/AC	
<u> </u>	2	power transformer	Line	120 VAC	
J14	1-14	Micro Programming	For factory use	N/A	

Table 28: Power & Communication Terminals

Note: The power terminals on the PQconnect accepts 28 to 14 AWG stranded wire, with a tightening torque of 4.4 in-lb (0.5 Nm).

Depending on the size of the line reactor, you have the option of different terminations based on the reactor. Table 18 provides examples of the terminations used for the voltage sense wires from the PQconnect to the line reactor. All recommendations are used with 18 AWG stranded wire.

Table 29: Voltage sense wire termination

Connector Termination	Manufacturer Part Number	Manufacturer	Description	Reactor Size
Metal tab	43178-4002	Molex, LLC	Blade Contact 18-20 AWG Crimp Male Blade	Small line reactors with six position terminal blocks.
3/8" Ring Lug	2-320573-4	TE Connectivity Amp Connectors		
1/4" Ring Lug	2-31894-2	TE Connectivity Amp Connectors	Ring Terminal Connector	Large line reactors with copper bus bar terminals
1/2" Ring Lug	61863-2	Tyco Electronics		

Note: Voltage sense wire terminals J1 & J3 accept wire gauges of 16-28 AWG with a tightening torque of 4.4 in-lb (0.5 Nm). Alternate/Equivalent tabs and ring lugs may be used for terminations. Please consult with TCI Tech-support if there are any questions for alternate parts.

Troubleshooting

	Only qualified electricians should carry out all electrical installation & maintenance work on the Sinewave filter.
	Disconnect all sources of power to the MFC and connected equipment before working on the equipment. Do not attempt any work on a powered MFC.
Warning	The MFC unit contains high voltage and capacitors. Wait at least five minutes after disconnecting power from the filter before attempting to service the conditioner. Check
	between all phases of the input and output lines. All maintenance and troubleshooting must be done by a qualified electrician. Failure to follow standard safety procedures may result in death or serious injury. Unless an external disconnect means has
	reactors, will still be energized.

Receiving Inspection

The connectivity board has been thoroughly inspected and functionally tested at the factory and carefully packaged for shipment. After receiving the unit, immediately inspect the shipping container and report any damage to the carrier that delivered the unit. Verify that the part number of the unit received is the same as the part number listed on the purchase order.

Connectivity Board Problem

The MFC is comprised of three major components; the PQconnect connectivity board, the tuning reactor, and the capacitors. The PQconnect PCB contains diagnostic LEDs. The locations of the LEDs are shown in **Figure 11** and their functions are listed in Table 30

Table 30: LED Functions

LED	LED Color	Description	
D1	Green	Fault Relay	
D2	Green	Fault Relay Inverted	
D5	Green	Status LED	
D6	Green	Microprocessor Status LED	
D11	Green	RS485 Communication is active	
D20	Green	24V LED	
D21	Green	5V LED	

Note: Status LED's will blink according to the filter status. The microprocessor status LED will blink 1hz if the filter is okay, however if there has been an alert the LED will blink according to the status detection. It will initially start with slow blinks (2 = Register A faults, 3 = Register B faults), then blink fast depending on the fault. Table 21 summarizes the LED blinks based on the fault condition.

Fault	Group (Slow blinks)	LED Specifier (Fast Blinks)
No fault detected/ enabled		1
Overvoltage Phase A		2
Overvoltage Phase B		3
Overvoltage Phase C		4
High frequency Phase A		5
High frequency Phase B	0	6
High frequency Phase C	2	7
Phase Loss (Phase A)		8
Phase Loss (Phase B)		9
Phase Loss (Phase C)		10
High THVD Phase A		11
High THVD Phase B		12
High THVD Phase C		13
Under Temperature		14
Over Temperature		15
CPU Error		16
Reactor Switch	3	1

Table 31: LED Codes

Debug Fault conditions

Based on the fault condition there are various ways a fault can appear. **Before investigating the sinewave filter internally, disengage supply voltage to the filter**.

Table 32: Fault conditions

Fault Condition	Description	Debug
Overvoltage Phase A, B, or C	Filter has detected overvoltage on a phase(s)	Check input power connections to the filter.
High Frequency Phase A, B, or C	High Frequency detection on phase voltage(s)	Check fuses leading to filter capacitors If fuses are not blown, measure Capacitance of the capacitors Check power connections of the unit, reference drawing 24281-1PQ
Phase Loss Phase A, B, or C	Filter phase loss	Check fused disconnect or circuit breaker upstream of the filter. Check input power connections to the filter
High THVD Phase A, B, or C	High voltage Total Harmonic Distortion	Check fuses leading to filter capacitors If fuses are not blown, measure Capacitance of the capacitors Check power connections of the unit, reference drawing 24281-1PQ
Under Temperature	Filter ambient temperature is operating below threshold	Check fuses of control power transformers leading to the heater.
Over Temperature	Filter ambient temperature is operating above threshold	Check fuses of control power transformers leading to fans. Make sure fans are operating
CPU Error	Processor malfunction	Power cycle unit and if issue persists contact tech support
Reactor Switch	Reactor Thermal Switch open	Check thermal switch connections to PCB

Evaluating MotorGuard Performance

The MotorGuard performance can be evaluated by checking the output voltage waveform with an oscilloscope.

Warning	Only qualified electricians should carry out all electrical installation and maintenance work on the MotorGuard. Exercise caution when checking waveforms with an oscilloscope. Use a dual probe, differential input set-up, or other means of isolating the scope
	Disconnect power when attaching and removing the probes
	Disconnect power when attaching and removing the probes.

Typical VFD Waveforms without Filtering

Figure 6 shows two examples of output voltage waveforms for a typical PWM variable frequency drive. The example labeled "VFD Output Voltage Waveform" is a "clean" waveform as it would appear with nothing connected to the VFD output terminals. The voltage peaks of this waveform are about 650 volts for a 480 volt drive. The example labeled "Motor Voltage Waveform" shows the typical waveform at the terminals of a motor located a distance away from the VFD. This waveform has voltage peaks of 1500 volts or higher due to the voltage spikes caused by the reflected wave phenomenon.

Filter Output Performance

Figure 7 shows the voltage waveform at the output of the MotorGuard or at the terminals of a motor connected to the MotorGuard.

Replacement Parts

If replacement parts are needed, please contact your TCI representative. To ensure that the MotorGuard continues to perform to its original specifications, replacement parts should conform to TCI specifications.

Factory Contacts and Tech Support

For technical support, contact your local TCI distributor or sales representative.

You can contact TCI directly at 800-824-8282. Select "Customer Service" or "Technical Support" and have your MotorGuard nameplate information available.

10.0 Drawings

Typical MotorGuard drawings are provided on the transcoil website. Please visit https://transcoil.com/products/motorguard-sinewave-filter/motorguard-industrial-drawings/

These drawings provide general information describing your MotorGuard filter. More specific information is provided by the drawings shipped with the unit. Be sure to carefully review the information provided by these drawings. This information takes precedence over the information provided in this manual.

TCI, LLC W132 N10611 Grant Drive Germantown, Wisconsin 53022

Phone: 414-357-4480 Fax: 414-357-4484 Helpline: 800-824-8282 Web Site: <u>www.transcoil.com</u> © 2020 TCI, LLC All rights reserved

Product No: 24362 Effective: 03/13/2020 Version: 1.2